Artículo

Sterle, H.A.; Barreiro Arcos, M.L.; Valli, E.; Paulazo, M.A.; Méndez Huergo, S.P.; Blidner, A.G.; Cayrol, F.; Díaz Flaqué, M.C.; Klecha, A.J.; Medina, V.A.; Colombo, L.; Rabinovich, G.A.; Cremaschi, G.A. "The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies" (2016) Journal of Molecular Medicine. 94(4):417-429
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Abstract: In spite of considerable evidence on the regulation of immunity by thyroid hormones, the impact of the thyroid status in tumor immunity is poorly understood. Here, we evaluated the antitumor immune responses evoked in mice with different thyroid status (euthyroid, hyperthyroid, and hypothyroid) that developed solid tumors or metastases after inoculation of syngeneic T lymphoma cells. Hyperthyroid mice showed increased tumor growth along with increased expression of cell cycle regulators compared to hypothyroid and control tumor-bearing mice. However, hypothyroid mice showed a higher frequency of metastases than the other groups. Hyperthyroid mice bearing tumors displayed a lower number of tumor-infiltrating T lymphocytes, lower percentage of functional IFN-γ-producing CD8+ T cells, and higher percentage of CD19+ B cells than euthyroid tumor-bearing mice. However, no differences were found in the distribution of lymphocyte subpopulations in tumor-draining lymph nodes (TDLNs) or spleens among different experimental groups. Interestingly, hypothyroid TDLN showed an increased percentage of regulatory T (Treg) cells, while hyperthyroid mice displayed increased number and activity of splenic NK cells, which frequency declined in spleens from hypothyroid mice. Moreover, a decreased number of splenic myeloid-derived suppressor cells (MDSCs) were found in tumor-bearing hyperthyroid mice as compared to hypothyroid or euthyroid mice. Additionally, hyperthyroid mice showed increased cytotoxic activity, which declined in hypothyroid mice. Thus, low levels of intratumoral cytotoxic activity would favor tumor local growth in hyperthyroid mice, while regional and systemic antitumor response may contribute to tumor dissemination in hypothyroid animals. Our results highlight the importance of monitoring the thyroid status in patients with T cell lymphomas. Key messages: T cell lymphoma phenotype is paradoxically influenced by thyroid status.Hyperthyroidism favors tumor growth and hypothyroidism rises tumor dissemination.Thyroid status affects the distribution of immune cell types in the tumor milieu.Thyroid status also modifies the nature of local and systemic immune responses. © 2015, Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies
Autor:Sterle, H.A.; Barreiro Arcos, M.L.; Valli, E.; Paulazo, M.A.; Méndez Huergo, S.P.; Blidner, A.G.; Cayrol, F.; Díaz Flaqué, M.C.; Klecha, A.J.; Medina, V.A.; Colombo, L.; Rabinovich, G.A.; Cremaschi, G.A.
Filiación:Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
Area de Investigación, Instituto de Oncología “Angel H. Roffo”, UBA, CONICET, Buenos Aires, Argentina
Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina
Palabras clave:Antitumor immune response; Apoptosis; Proliferation; T cell lymphoma; Thyroid hormones; CD9 antigen; gamma interferon; propylthiouracil; thyroid hormone; thyroid hormone; animal cell; animal experiment; apoptosis; Article; B lymphocyte; cancer growth; CD8+ T lymphocyte; cell cycle; cell proliferation; controlled study; cytotoxic T lymphocyte; cytotoxicity; euthyroidism; female; hyperthyroidism; hypothyroidism; immune response; immunocompetent cell; lymphocyte function; mouse; natural killer cell; nonhuman; spleen; suppressor cell; T cell lymphoma; T lymphocyte; T lymphocyte subpopulation; T-Cell lymphoma cell line; tumor cell inoculation; tumor microenvironment; animal; cell line; complication; disease model; drug effects; hyperthyroidism; hypothyroidism; immunology; immunomodulation; lymphocyte count; metabolism; metastasis; pathology; T cell lymphoma; thyroid disease; tumor volume; Animals; Apoptosis; Cell Line; Cell Proliferation; Disease Models, Animal; Female; Hyperthyroidism; Hypothyroidism; Immunomodulation; Lymphocyte Count; Lymphoma, T-Cell; Mice; Neoplasm Metastasis; T-Lymphocyte Subsets; Thyroid Diseases; Thyroid Hormones; Tumor Burden; Tumor Microenvironment
Año:2016
Volumen:94
Número:4
Página de inicio:417
Página de fin:429
DOI: http://dx.doi.org/10.1007/s00109-015-1363-2
Título revista:Journal of Molecular Medicine
Título revista abreviado:J. Mol. Med.
ISSN:09462716
CODEN:JMLME
CAS:gamma interferon, 82115-62-6; propylthiouracil, 51-52-5; Thyroid Hormones
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09462716_v94_n4_p417_Sterle

Referencias:

  • Pinto, M., Soares, P., Ribatti, D., Thyroid hormone as a regulator of tumor induced angiogenesis (2011) Cancer Lett, 301 (2), pp. 119-126. , COI: 1:CAS:528:DC%2BC3MXmsVGitA%3D%3D, PID: 21183275
  • Barreiro Arcos, M.L., Sterle, H.A., Paulazo, M.A., Valli, E., Klecha, A.J., Isse, B., Pellizas, C.G., Cremaschi, G.A., Cooperative nongenomic and genomic actions on thyroid hormone mediated-modulation of T cell proliferation involve up-regulation of thyroid hormone receptor and inducible nitric oxide synthase expression (2011) J Cell Physiol, 226 (12), pp. 3208-3218. , COI: 1:CAS:528:DC%2BC3MXht1Sqtb%2FL, PID: 21344381
  • Barreiro Arcos, M.L., Sterle, H.A., Vercelli, C., Valli, E., Cayrol, M.F., Klecha, A.J., Paulazo, M.A., Cremaschi, G.A., Induction of apoptosis in T lymphoma cells by long-term treatment with thyroxine involves PKCzeta nitration by nitric oxide synthase (2013) Apoptosis, 18 (11), pp. 1376-1390. , COI: 1:CAS:528:DC%2BC3sXhs1Kit77I, PID: 23733107
  • Tsui, K.H., Hsieh, W.C., Lin, M.H., Chang, P.L., Juang, H.H., Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-cell translocation gene 2 (2008) Prostate, 68 (6), pp. 610-619. , COI: 1:CAS:528:DC%2BD1cXms1WisrY%3D, PID: 18196550
  • Cohen, K., Ellis, M., Khoury, S., Davis, P.J., Hercbergs, A., Ashur-Fabian, O., Thyroid hormone is a MAPK-dependent growth factor for human myeloma cells acting via alphavbeta3 integrin (2011) Mol Cancer Res, 9 (10), pp. 1385-1394. , COI: 1:CAS:528:DC%2BC3MXhtlWrtbvE, PID: 21821675
  • Ness, R.B., Grisso, J.A., Cottreau, C., Klapper, J., Vergona, R., Wheeler, J.E., Morgan, M., Schlesselman, J.J., Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer (2000) Epidemiology, 11 (2), pp. 111-117. , COI: 1:STN:280:DC%2BD3cvmsFKkuw%3D%3D, PID: 11021606
  • Ko, A.H., Wang, F., Holly, E.A., Pancreatic cancer and medical history in a population-based case–control study in the San Francisco Bay Area, California (2007) Cancer Causes Control, 18 (8), pp. 809-819. , PID: 17632765
  • Hellevik, A.I., Asvold, B.O., Bjoro, T., Romundstad, P.R., Nilsen, T.I., Vatten, L.J., Thyroid function and cancer risk: a prospective population study (2009) Cancer Epidemiol Biomarkers Prev, 18 (2), pp. 570-574. , COI: 1:CAS:528:DC%2BD1MXhslShu78%3D, PID: 19155436
  • Cristofanilli, M., Yamamura, Y., Kau, S.W., Bevers, T., Strom, S., Patangan, M., Hsu, L., Hortobagyi, G.N., Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma (2005) Cancer, 103 (6), pp. 1122-1128. , COI: 1:CAS:528:DC%2BD2MXivFWgs7c%3D, PID: 15712375
  • Reddy, A., Dash, C., Leerapun, A., Mettler, T.A., Stadheim, L.M., Lazaridis, K.N., Roberts, R.O., Roberts, L.R., Hypothyroidism: a possible risk factor for liver cancer in patients with no known underlying cause of liver disease (2007) Clin Gastroenterol Hepatol, 5 (1), pp. 118-123. , PID: 17008133
  • Hassan, M.M., Kaseb, A., Li, D., Patt, Y.Z., Vauthey, J.N., Thomas, M.B., Curley, S.A., Abdalla, E.K., Association between hypothyroidism and hepatocellular carcinoma: a case–control study in the United States (2009) Hepatology, 49 (5), pp. 1563-1570. , PID: 19399911
  • Rennert, G., Rennert, H.S., Pinchev, M., Gruber, S.B., A case–control study of levothyroxine and the risk of colorectal cancer (2010) J Natl Cancer Inst, 102 (8), pp. 568-572. , COI: 1:CAS:528:DC%2BC3cXlt1Cntr4%3D, PID: 20305129
  • Hercbergs, A.H., Ashur-Fabian, O., Garfield, D., Thyroid hormones and cancer: clinical studies of hypothyroidism in oncology (2010) Curr Opin Endocrinol Diabetes Obes, 17, pp. 432-436. , COI: 1:CAS:528:DC%2BC3cXhtVOhs7nI, PID: 20689420
  • Angelousi, A.G., Anagnostou, V.K., Stamatakos, M.K., Georgiopoulos, G.A., Kontzoglou, K.C., Mechanisms in endocrinology: primary HT and risk for breast cancer: a systematic review and meta-analysis (2012) Eur J Endocrinol, 17 (5), pp. 432-436
  • Moeller, L.C., Fuhrer, D., Thyroid hormone, thyroid hormone receptors, and cancer: a clinical perspective (2013) Endocr Relat Cancer, 20 (2), pp. R19-R29. , COI: 1:CAS:528:DC%2BC3sXotFyrs7c%3D, PID: 23319493
  • Theodossiou, C., Schwarzenberger, P., Propylthiouracil reduces xenograft tumor growth in an athymic nude mouse prostate cancer model (2000) Am J Med Sci, 319 (2), pp. 96-99. , COI: 1:STN:280:DC%2BD3c7mtF2iuw%3D%3D, PID: 10698093
  • Martinez-Iglesias, O., Garcia-Silva, S., Regadera, J., Aranda, A., Hypothyroidism enhances tumor invasiveness and metastasis development (2009) PLoS ONE, 4 (7), p. e6428. , PID: 19641612
  • Sterle, H.A., Valli, E., Cayrol, F., Paulazo, M.A., Martinel Lamas, D.J., Diaz Flaque, M.C., Klecha, A.J., Cremaschi, G.A., Thyroid status modulates T lymphoma growth via cell cycle regulatory proteins and angiogenesis (2014) J Endocrinol, 222 (2), pp. 243-255. , COI: 1:CAS:528:DC%2BC2cXhsVChtrnN, PID: 24928937
  • Cayrol, F., Diaz Flaque, M.C., Fernando, T., Yang, S.N., Sterle, H.A., Bolontrade, M., Amoros, M., Ahn, H., Integrin alphavbeta3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells (2015) Blood, 125 (5), pp. 841-851. , COI: 1:CAS:528:DC%2BC2MXisFejtrY%3D, PID: 25488971
  • Barreiro Arcos, M.L., Gorelik, G., Klecha, A., Genaro, A.M., Cremaschi, G.A., Thyroid hormones increase inducible nitric oxide synthase gene expression downstream from PKC-zeta in murine tumor T lymphocytes (2006) Am J Physiol Cell Physiol, 291 (2), pp. C327-C336. , PID: 16495371
  • Klecha, A.J., Genaro, A.M., Gorelik, G., Barreiro Arcos, M.L., Silberman, D.M., Schuman, M., Garcia, S.I., Cremaschi, G.A., Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase C signaling pathway (2006) J Endocrinol, 189 (1), pp. 45-55. , COI: 1:CAS:528:DC%2BD28Xkslaqsbg%3D, PID: 16614380
  • Gutkin, D.W., Shurin, M.R., Clinical evaluation of systemic and local immune responses in cancer: time for integration (2014) Cancer Immunol Immunother, 63 (1), pp. 45-57. , COI: 1:CAS:528:DC%2BC3sXhs1WjsbvL, PID: 24100804
  • Fridman, W.H., Pages, F., Sautes-Fridman, C., Galon, J., The immune contexture in human tumours: impact on clinical outcome (2012) Nat Rev Cancer, 12 (4), pp. 298-306. , COI: 1:CAS:528:DC%2BC38Xjslersb4%3D, PID: 22419253
  • Rabinovich, G.A., Gabrilovich, D., Sotomayor, E.M., (2007) Immunosuppressive strategies that are mediated by tumor cells, 25, pp. 267-296
  • Kilkenny, C., Browne, W.J., Cuthill, I.C., Emerson, M., Altman, D.G., Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research (2010) PLoS Biol, 8 (6), p. e1000412. , PID: 20613859
  • Croci, D.O., Zacarias Fluck, M.F., Rico, M.J., Matar, P., Rabinovich, G.A., Scharovsky, O.G., Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment (2007) Cancer Immunol Immunother, 56 (11), pp. 1687-1700. , PID: 17571260
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: a potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5 (3), pp. 241-251. , COI: 1:CAS:528:DC%2BD2cXjtVartbY%3D, PID: 15050916
  • Blidner, A.G., Salatino, M., Mascanfroni, I.D., Diament, M.J., Bal de Kier Joffe, E., Jasnis, M.A., Klein, S.M., Rabinovich, G.A., Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments (2015) J Immunol, 194 (7), pp. 3452-3462. , COI: 1:CAS:528:DC%2BC2MXkvVKjurk%3D, PID: 25740944
  • Reiche, E.M., Nunes, S.O., Morimoto, H.K., Stress, depression, the immune system, and cancer (2004) Lancet Oncol, 5 (10), pp. 617-625. , COI: 1:CAS:528:DC%2BD2cXotF2isrY%3D, PID: 15465465
  • Hammacher, A., Thompson, E.W., Williams, E.D., Interleukin-6 is a potent inducer of S100P, which is up-regulated in androgen-refractory and metastatic prostate cancer (2005) Int J Biochem Cell Biol, 37 (2), pp. 442-450. , COI: 1:CAS:528:DC%2BD2cXotlCnuro%3D, PID: 15474988
  • Smith, H.A., Kang, Y., The metastasis-promoting roles of tumor-associated immune cells (2013) J Mol Med, 91 (4), pp. 411-429. , COI: 1:CAS:528:DC%2BC3sXltFCiurs%3D, PID: 23515621
  • Shu, S.T., Martin, C.K., Thudi, N.K., Dirksen, W.P., Rosol, T.J., Osteolytic bone resorption in adult T-cell leukemia/lymphoma (2010) Leuk Lymphoma, 51 (4), pp. 702-714. , COI: 1:CAS:528:DC%2BC3cXkt1ans7s%3D, PID: 20214446
  • Maffuz, A., Barroso-Bravo, S., Najera, I., Zarco, G., Alvarado-Cabrero, I., Rodriguez-Cuevas, S.A., Tumor size as predictor of microinvasion, invasion, and axillary metastasis in ductal carcinoma in situ (2006) J Exp Clin Cancer Res, 25 (2), pp. 223-227. , COI: 1:STN:280:DC%2BD28vptlGqtw%3D%3D, PID: 16918134
  • Minn, A.J., Gupta, G.P., Padua, D., Bos, P., Nguyen, D.X., Nuyten, D., Kreike, B., Ishwaran, H., Lung metastasis genes couple breast tumor size and metastatic spread (2007) Proc Natl Acad Sci U S A, 104 (16), pp. 6740-6745. , COI: 1:CAS:528:DC%2BD2sXkvFWjsbo%3D, PID: 17420468
  • Mihara, S., Suzuki, N., Wakisaka, S., Suzuki, S., Sekita, N., Yamamoto, S., Saito, N., Sakane, T., Effects of thyroid hormones on apoptotic cell death of human lymphocytes (1999) J Clin Endocrinol Metab, 84 (4), pp. 1378-1385. , COI: 1:CAS:528:DyaK1MXisVyrtL8%3D, PID: 10199782
  • Rosenquist, R., Davi, F., Stamatopoulos, K., Antigens in lymphoma development—current knowledge and future directions (2013) Semin Cancer Biol, 23 (6), pp. 397-398. , COI: 1:CAS:528:DC%2BC3sXhs1OrurbJ, PID: 24080344
  • Dave, S.S., Wright, G., Tan, B., Rosenwald, A., Gascoyne, R.D., Chan, W.C., Fisher, R.I., Grogan, T.M., Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells (2004) N Engl J Med, 351 (21), pp. 2159-2169. , COI: 1:CAS:528:DC%2BD2cXhtVSqtL%2FP, PID: 15548776
  • Carreras, J., Lopez-Guillermo, A., Fox, B.C., Colomo, L., Martinez, A., Roncador, G., Montserrat, E., Banham, A.H., High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma (2006) Blood, 108 (9), pp. 2957-2964. , COI: 1:CAS:528:DC%2BD28XhtFygtrvK, PID: 16825494
  • De Vito, P., Incerpi, S., Pedersen, J.Z., Luly, P., Davis, F.B., Davis, P.J., Thyroid hormones as modulators of immune activities at the cellular level (2011) Thyroid, 21 (8), pp. 879-890. , PID: 21745103
  • Alamino, V.A., Mascanfroni, I.D., Montesinos, M.M., Gigena, N., Donadio, A.C., Blidner, A.G., Milotich, S.I., Rabinovich, G.A., Antitumor responses stimulated by dendritic cells are improved by triiodothyronine binding to the thyroid hormone receptor beta (2015) Cancer Res, 75 (7), pp. 1265-1274. , COI: 1:CAS:528:DC%2BC2MXlsleis74%3D, PID: 25672979
  • Namm, J.P., Li, Q., Lao, X., Lubman, D.M., He, J., Liu, Y., Zhu, J., Chang, A.E., B lymphocytes as effector cells in the immunotherapy of cancer (2012) J Surg Oncol, 105 (4), pp. 431-435. , COI: 1:CAS:528:DC%2BC38Xhsl2mu7c%3D, PID: 21898417
  • Keane, C., Gill, D., Vari, F., Cross, D., Griffiths, L., Gandhi, M., CD4(+) tumor infiltrating lymphocytes are prognostic and independent of R-IPI in patients with DLBCL receiving R-CHOP chemo-immunotherapy (2013) Am J Hematol, 88 (4), pp. 273-276. , COI: 1:CAS:528:DC%2BC3sXks1Ghsbc%3D, PID: 23460351
  • Juszczynski, P., Ouyang, J., Monti, S., Rodig, S.J., Takeyama, K., Abramson, J., Chen, W., Shipp, M.A., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc Natl Acad Sci U S A, 104 (32), pp. 13134-13139. , COI: 1:CAS:528:DC%2BD2sXpt1GntLY%3D, PID: 17670934
  • Gassmann, P., Haier, J., The tumor cell-host organ interface in the early onset of metastatic organ colonisation (2008) Clin Exp Metastasis, 25 (2), pp. 171-181. , COI: 1:CAS:528:DC%2BD1cXmtFyhur4%3D, PID: 18058027
  • Bonzheim, I., Geissinger, E., Tinguely, M., Roth, S., Grieb, T., Reimer, P., Wilhelm, M., Rudiger, T., Evaluation of FoxP3 expression in peripheral T-cell lymphoma (2008) Am J Clin Pathol, 130 (4), pp. 613-619. , COI: 1:CAS:528:DC%2BD1cXht1Cjt7bN, PID: 18794055
  • Marzano, A.V., Vezzoli, P., Fanoni, D., Venegoni, L., Berti, E., Primary cutaneous T-cell lymphoma expressing FOXP3: a case report supporting the existence of malignancies of regulatory T cells (2009) J Am Acad Dermatol, 61 (2), pp. 348-355. , PID: 19615546
  • Yano, H., Ishida, T., Inagaki, A., Ishii, T., Kusumoto, S., Komatsu, H., Iida, S., Ueda, R., Regulatory T-cell function of adult T-cell leukemia/lymphoma cells (2007) Int J Cancer, 120 (9), pp. 2052-2057. , COI: 1:CAS:528:DC%2BD2sXjsVCqtrs%3D, PID: 17278106
  • Tadmor, T., Fell, R., Polliack, A., Attias, D., Absolute monocytosis at diagnosis correlates with survival in diffuse large B-cell lymphoma-possible link with monocytic myeloid-derived suppressor cells (2013) Hematol Oncol, 31 (2), pp. 65-71. , PID: 22714941
  • Capuano, G., Rigamonti, N., Grioni, M., Freschi, M., Bellone, M., Modulators of arginine metabolism support cancer immunosurveillance (2009) BMC Immunol, 10, p. 1. , PID: 19134173

Citas:

---------- APA ----------
Sterle, H.A., Barreiro Arcos, M.L., Valli, E., Paulazo, M.A., Méndez Huergo, S.P., Blidner, A.G., Cayrol, F.,..., Cremaschi, G.A. (2016) . The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies. Journal of Molecular Medicine, 94(4), 417-429.
http://dx.doi.org/10.1007/s00109-015-1363-2
---------- CHICAGO ----------
Sterle, H.A., Barreiro Arcos, M.L., Valli, E., Paulazo, M.A., Méndez Huergo, S.P., Blidner, A.G., et al. "The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies" . Journal of Molecular Medicine 94, no. 4 (2016) : 417-429.
http://dx.doi.org/10.1007/s00109-015-1363-2
---------- MLA ----------
Sterle, H.A., Barreiro Arcos, M.L., Valli, E., Paulazo, M.A., Méndez Huergo, S.P., Blidner, A.G., et al. "The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies" . Journal of Molecular Medicine, vol. 94, no. 4, 2016, pp. 417-429.
http://dx.doi.org/10.1007/s00109-015-1363-2
---------- VANCOUVER ----------
Sterle, H.A., Barreiro Arcos, M.L., Valli, E., Paulazo, M.A., Méndez Huergo, S.P., Blidner, A.G., et al. The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies. J. Mol. Med. 2016;94(4):417-429.
http://dx.doi.org/10.1007/s00109-015-1363-2