Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bacillus sp. B19, Bacillus sp. P12 and B. amyloliquefaciens B14 were isolated from soils of Salta province, and PGPR properties on the common bean (Phaseolus vulgaris L.) cv. Alubia and antagonistic activity against Sclerotinia sclerotiorum were studied. It was determined that B19 and P12 increased crop germination potential (GP) from the common bean by 14.5% compared to control seeds; these strains also increased root length (10.4 and 15%, respectively) and stem length (20.2 and 30%, respectively) compared to the control; however, as for the B14 strain, no increases in growth parameters were detected. In addition, all the treatments that combined two bacilli: B14 + B19, B14 + P12 and B19 + P12, generated beneficial effects on GP and seedling growth compared to control seeds, but not compared to a single inoculant. B19 and P12 strains synthesized auxins at concentrations of 5.71 and 4.90 mg/mL, respectively, and it was qualitatively determined that they synthesize siderophores. In addition, previous studies have determined that B14 produces auxins in a concentration of 10.10 mg/mL, and qualitatively synthesizes siderophores. The phytosanitary state of the white bean cv. Alubia control seeds revealed bacterial contamination in 87% of all the evaluated seeds and different fungi such as Cladosporium sp., Fusarium sp., and Rhizopus sp. Bean seeds treated with B14, B19 or P12 showed no growth of contaminating bacteria or of pathogenic fungi; in fact, bacilli inoculum development was observed in all seeds. Additionally, B19, P12 and B14 strains inhibited in vitro the development of 9 native S. sclerotiorum strains isolated from the Salta region, with FI ranging between 60 and 100%. The three Bacillus strains synthesized different isoforms of the lipopeptides: surfactin, iturin, and fengycin in the presence of S. sclerotiorum, as determined by MALDI-TOF. In the in vivo trials, when common bean seeds were grown in soils contaminated with S. sclerotiorum, an incidence of 100% was determined when the seeds were not treated with any Bacillus. Seeds treated with the chemical fungicide and sown in S. sclerotiorum-infested soil did not produce seed emergence, while the inoculation of the seeds with B14 + P12, B14 + B19 or B19 + P12 reduced the effect of the pathogen by 46, 43 and 25%, respectively. Disease progression in B14 + P12 and B14 + B19 treatments was significantly lower than in the remaining treatments, with an AUDPC of 873.75 and 1071, respectively. © 2018 Elsevier GmbH

Registro:

Documento: Artículo
Título:Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains
Autor:Sabaté, D.C.; Brandan, C.P.; Petroselli, G.; Erra-Balsells, R.; Audisio, M.C.
Filiación:Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, 4400, Argentina
Instituto Nacional de Tecnología Agropecuaria (INTA)-Estación Experimental Salta, Ruta Nacional 68 Km 172, Cerrillos, Salta, 4403, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Pabellón II, 3er P., Ciudad Universitaria, Buenos Aires, 1428, Argentina
CONICET, Universidad de Buenos Aires, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Facultad de Ciencias Exactas y Naturales, Pabellón II, 3er P., Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Bacillus; Biological control; Lipopeptides; Phaseolus vulgaris L.; Sclerotinia sclerotiorum; Bacilli; Bacteriology; Fungi; Soils; Antagonistic activity; Bacterial contamination; Biological controls; Disease progression; Germination potential; Lipopeptides; Phaseolus vulgaris l; Sclerotinia Sclerotiorum; Seed; bacterium; biocontrol agent; biological control; concentration (composition); fungicide; fungus; growth; inoculation; legume; peptide; pesticide application; seedling; siderophore; Argentina; Salta [Argentina]; Bacilli (class); Bacillus (bacterium); Bacillus amyloliquefaciens; Bacillus sp.; Bacteria (microorganisms); Cladosporium; Fungi; Fusarium sp.; Phaseolus vulgaris; Rhizopus; Sclerotinia sclerotiorum; cyclopeptide; fengycin; fungicide; indoleacetic acid derivative; lipopeptide; RNA 16S; siderophore; Ascomycetes; Bacillus; bacterium; biological control agent; chemistry; classification; disk diffusion; drug effect; Fabaceae; genetics; germination; growth, development and aging; isolation and purification; metabolism; microbiology; phylogeny; plant development; plant disease; plant seed; prevention and control; Ascomycota; Bacillus; Bacteria; Biological Control Agents; Disk Diffusion Antimicrobial Tests; Fabaceae; Fungicides, Industrial; Germination; Indoleacetic Acids; Lipopeptides; Peptides, Cyclic; Phylogeny; Plant Development; Plant Diseases; RNA, Ribosomal, 16S; Seeds; Siderophores
Año:2018
Volumen:211
Página de inicio:21
Página de fin:30
DOI: http://dx.doi.org/10.1016/j.micres.2018.04.003
Título revista:Microbiological Research
Título revista abreviado:Microbiol Res.
ISSN:09445013
CODEN:MCRSE
CAS:Biological Control Agents; fengycin; Fungicides, Industrial; Indoleacetic Acids; Lipopeptides; Peptides, Cyclic; RNA, Ribosomal, 16S; Siderophores
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09445013_v211_n_p21_Sabate

Referencias:

  • Altamirano, F., Caracterización de bacterias de la raíz de dos variedades de soja cultivadas en regiones geográficas diferentes (2002) Tesis Doctoral, Universidad Nacional de Jujuy, Argentina, pp. 1-88
  • Béchet, M., Caradec, T., Hussein, W., Abderrahmani, A., Chollet, M., Leclère, V., Dubois, T., Jacques, P., Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp (2012) Appl. Microbiol. Biotechnol., 95, pp. 593-600
  • Babalola, O.O., Beneficial bacteria of agricultural importance (2010) Biotechnol. Lett., 32, pp. 1559-1570
  • Balasubramanian, P., Conner, R., McLaren, D., Chatterton, S., Hou, A., Partial resistance to white mould in dry bean (2014) Can. J. Plant Sci., 94, pp. 683-691
  • Banat, I.M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., Smyth, T.J., Marchant, R., Microbial biosurfactants production, applications and future potential (2010) Appl. Microbiol. Biotechnol., 87, pp. 427-444
  • Bardin, S.D., Huang, H.C., Research on biology and control of Sclerotinia diseases in Canada (2001) Can. J. Plant Pathol., 23, pp. 88-98
  • Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., Ongena, M., Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens (2014) Microb. Biotechnol., 8, pp. 281-295
  • Chandler, S., Van Hese, N., Coutte, F., Jacques, P., Höfte, M., De Vleesschauwer, D., Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.) (2015) Physiol. Mol. Plant Pathol., 91, pp. 20-30
  • Chen, Y., Gao, X., Chen, Y., Qin, H., Huang, L., Han, Q., Inhibitory efficacy of endophytic Bacillus subtilis EDR4 against Sclerotinia sclerotiorum on rapeseed (2014) Biol. Control, 78, pp. 67-76
  • Coley-Smith, J.R., Cooke, R.C., Survival and germination of fungal sclerotia (1971) Annu. Rev. Phytopathol., 9, pp. 65-92
  • Correa, B.O., Schafer, J.T., Moura, A.B., Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean (2014) Biol. Control, 72, pp. 71-75
  • Daffonchio, D., Borin, S., Frova, G., Manachini, P., Sorlini, C., PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveals a different intraespecific genomic variability of Bacillus cereus and Bacillus licheniformis (1998) Int. J. Syst. Bacteriol., 48, pp. 107-116
  • De Bernardi, L.A., Perfil del Poroto, Gacetilla Informativa del Sector Agrícola (2016) Newsletter n°, p. 83
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., InfoStat Versión 2012 (2012), Grupo InfoStat, FCA, Universidad Nacional de Córdoba Argentina; El Arbi, A., Rochex, A., Chataign, G., Béchet, M., Lecouturier, D., Arnauld, S., Gharsallah, N., Jacques, P., The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides (2016) Res. Microbiol., 167, pp. 46-57
  • Elkahouia, S., Djébali, N., Karkouch, I., Hadj Ibrahim, A., Kalai, L., Bachkouel, S., Tabbene, O., Limam, F., Mass spectrometry identification of antifungal lipopeptides from Bacillus sp: BCLRB2 against Rhizoctonia solani and Sclerotinia Sclerotiorum (2014) Appl. Biochem. Microbiol., 50, pp. 161-165
  • Elsheshtawi, M., Elkhaky, M., Sayed, S.R., Bahkali, A.H., Mohammed, A.A., Gambhir, D., Mansour, A.S., Elgorban, A.M., Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using Contans and reduced fungicides application (2017) Saudi J. Biol. Sci., 24, pp. 405-409
  • Falardeau, J., Wise, C., Novitsky, L., Avis, T.J., Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens (2013) J. Chem. Ecol., 39, pp. 869-878
  • Fernando, W.G.D., Nakkeeran, S., Zhang, Y., Savchuk, S., Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals (2007) Crop Prot., 26, pp. 100-107
  • Goldstein, A.H., Bacterial solubilization of mineral phosphates: historical perspective and future prospects (1986) Am. J. Altern. Agric., 1, pp. 51-57
  • Guetsky, R., Shtienberg, D., Elad, Y., Dinoor, A., Combining biocontrol agents to reduce the variability of biological control (2001) Phytopathology, 91, pp. 621-627
  • Hathout, Y., Ho, Y.P., Ryzhov, V., Demirev, P., Fenselau, C., Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis (2000) J. Nat. Prod., 63, pp. 1492-1496
  • Hu, X., Roberts, D.P., Xie, L., Maul, J.E., Yu, C., Li, Y., Jiang, M., Liao, X., Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field (2014) Biol. Control, 70, pp. 54-64
  • Jakab, A., Szabó, A., Kovács, Z., Kátai, J., The effect of alternative methods of nutrient supply on some microbiological characteristics of a chernozem soil (2011) Analele Universitât;ii din Oradea Fascicula: Protectia Mediului, 17, pp. 85-90
  • Jetiyanon, K., Kloepper, J.W., Mixtures of plant growth-promoting rhizobacteria for induction of resistance against multiple plant disease (2002) Biol. Control, 24, pp. 285-291
  • Koumoutsi, A., Chen, X.H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., Borriss, R., Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42 (2004) J. Bacteriol., 186, pp. 1084-1096
  • Kumar, P., Dubey, R.C., Maheshwari, D.K., Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens (2012) Microbiol. Res., 167, pp. 493-499
  • Kumar, P., Pandey, P., Dubey, R.C., Kumar Maheshwari, D., Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies (2016) Rhizosphere, 2, pp. 13-23
  • Laditi, M.A., Nwoke, O.C., Jemo, M., Abaidoo, R.C., Ogunjobi, A.A., Evaluation of microbial inoculants as biofertilizers for the improvement of growth and yield of soybean and maize crops in savanna soils (2012) Afr. J. Agric. Res., 7, pp. 405-413
  • Landa, B., Hervas, A., Bettiol, W., Jiménez-Díaz, R., Antagonistic activity of bacteria from the chikpea rhizosphere against Fusarium oxysporum f. sp ciceris (1997) Phytoparasitica, 25, pp. 305-318
  • Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q., Zhang, R., Response of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production (2014) Front. Microbiol., 5, p. 636
  • Liu, J., Hagberg, I., Novitsky, L., Hadj-Moussa, H., Tyler, J.A., Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens (2014) Fungal Biol., 118, pp. 855-861
  • Mamaní Gonzáles, S.Y., Vizgarra, O.N., Mendez, D.E., Espeche, C.M., Jalil, A.C., Ploper, L.D., Campaña de poroto 2015: resultado de ensayos y análisis de campaña, Reporte Agroindustrial (2015), EEAOC; McCreary, C.M., Depuydt, D., Vyn, R.J., Gillard, C.L., Fungicide efficacy of dry bean white mold [Sclerotinia sclerotiorum (Lib.) de Bary, causal organism] and economic analysis at moderate to high disease pressure (2016) Crop Prot., 82, pp. 75-81
  • Miklas, P.N., Porter, L.D., Kelly, J.D., Myers, J.R., Characterization of white mold disease avoidance in common bean (2013) Eur. J. Plant Pathol., 135, pp. 525-543
  • Miller, J.H., Experiments in Molecular Genetics (1972), Cold Spring Harbor Laboratory Cold Spring Harbor p 466; Nonami, H., Fukui, S., Erra-Balsells, R., β-Carboline alkaloids as matrices for matrix-assisted Ultraviolet Laser Desorption Time-of flight Mass Spectrometry of proteins and sulfated oligosaccharides: a comparative study using phenylcarbonyl compounds, carbazoles and classical matrices (1997) J. Mass Spectrom., 32, pp. 287-296
  • Ongena, M., Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol (2008) Trends Microbiol., 16, pp. 115-125
  • Pérez-García, A., Romero, D., de Vicente, A., Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture (2011) Curr. Opin. Biotechnol., 22, pp. 187-193
  • Parsa, S., García-Lemos, A.M., Castillo, K., Ortiz, V., Lopez-Lavalle, L.A.B., Braun, J., Vega, F.E., Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris (2016) Fungal Biol., 120, pp. 783-790
  • Pathak, K.V., Keharia, H., Gupta, K., Thakur, S.S., Balaram, P., Lipopeptides from the banyan endophyte, Bacillus subtillis K1: mass spectrometric characterization of a library of engycins (2012) J. Am. Soc. Spectrom, 23, pp. 1716-1728
  • Patten, C.L., Glick, B.R., Bacterial biosynthesis of indole-3-acetic acid (1996) Can. J. Microbiol., 42, pp. 207-220
  • Price, N.P., Rooney, A.P., Swezey, J.L., Perry, E., Cohan, F.M., Mass spectrometric analyses of lipopeptides from Bacillus strains isolated from diverse geographical locations (2007) FEMS Microbiol. Lett., 271, pp. 83-89
  • Royse, D.J., Ries, S.M., The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta (1978) Pyhtopathology, 68, pp. 603-607
  • Sabaté, D.C., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties (2017) Biol. Control, 113, pp. 1-8
  • Schenck zu Schweinsberg-Mickan, M., Müller, T., Impact of effective microorganisms and other biofertilizers on soil microbial characteristics, organic-matter decomposition, and plant growth (2009) J. Plant Nutr. Soil Sci., 172, pp. 704-712
  • Stefan, M., Munteanu, N., Stoleru, V., Mihasan, M., Hritcu, L., Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.) (2013) Sci. Hort., 151, pp. 22-29
  • Stein, T., Bacillus subtilis antibiotics: structures, syntheses and specific functions (2005) Mol. Microbiol., 56, pp. 845-857
  • Sun, G., Yao, T., Feng, C., Chen, L., Li, J., Wang, L., Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus (2017) Biol. Control, 104, pp. 35-43
  • Thais, R.S., Grabowski, C., Rossato, M., Romeiro, R.S., Mizubuti, E.S.G., Biological control of eucalyptus bacterial wilt with rhizobacteria (2015) Biol. Control, 80, pp. 14-22
  • Thimon, L., Peypoux, F., Maget-Dana, R., Roux, B., Michel, G., Interactions of bioactive lipopeptides, iturin A and surfactin from Bacillus subtilis (1992) Biotechnol. Appl. Biochem., 16, pp. 144-151
  • Torres, M.J., Petroselli, G., Daz, M., Erra-Balsells, R., Audisio, M.C., Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds (2015) World J. Microbiol. Biotechnol., 31, pp. 929-940
  • Torres, M.J., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds (2016) Microbiol. Res., 182, pp. 31-39
  • Torres, M.J., Pérez Brandan, C., Sabaté, D.C., Petroselli, G., Erra-Balsells, R., Audisio, M.C., Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L., pathogens (2017) Biol. Control, 105, pp. 93-99
  • Vargas Gil, J.R., Culto, J.P., Quiroga, I., Corvalán, E., Nieva, J.J., Nuñe, P., Chachaua, G., Atlas de los Suelos de la República Argentina. Tomo II. Salta. Secretaría de Agricultura, Ganadería y Pesca, Proy (1990) PNUD Arg., 85, pp. 289-350
  • Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., Cameotra, S.S., Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge (2002) Appl. Environ. Microbiol., 68, pp. 6210-6219
  • Vieira, R.T., Paula Júnior Teixeira, H., Carneiro, J., White mold management in common bean by increasing within-row distance between plants (2010) Plant Dis., 94, pp. 361-367
  • Vizgarra, O.N., Mamaní Gonzáles, S., Poroto (Phaseolus vulgaris L.): Manejo y recomendaciones. 4° Congreso de Cultivos de Verano (2012), EEAOC; Wilcoxson, R.D., Skovmand, B., Atif, A.H., Evaluation of wheat cultivars for ability to retard development of stem rust (1975) Ann. Appl. Biol., 80, pp. 275-281
  • Yánez-Mendizábal, V., Zeriouh, H., Vinas, I., Torres, R., Usall, J., Vicente, A., Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on productionoffengycin-like lipopeptides (2011) Eur. J. Plant Pathol., 132, pp. 609-619
  • Zhou, T., Boland, G.J., Biological control strategies for Sclerotinia diseases (1998) Plant-Microbe Interactions and Biological Control, pp. 127-156. , G.J. Boland L.D. Kuykendall Marcel Dekker New York
  • Zouari, I., Jlaiel, J., Tounsi, S., Trigui, M., Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds (2016) Biol. Control, 100, pp. 54-62
  • de Brito Alvarez, M., Gagne, A.G., Antoun, H., Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria (1995) Appl. Environ. Microbiol., 61, pp. 194-199

Citas:

---------- APA ----------
Sabaté, D.C., Brandan, C.P., Petroselli, G., Erra-Balsells, R. & Audisio, M.C. (2018) . Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological Research, 211, 21-30.
http://dx.doi.org/10.1016/j.micres.2018.04.003
---------- CHICAGO ----------
Sabaté, D.C., Brandan, C.P., Petroselli, G., Erra-Balsells, R., Audisio, M.C. "Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains" . Microbiological Research 211 (2018) : 21-30.
http://dx.doi.org/10.1016/j.micres.2018.04.003
---------- MLA ----------
Sabaté, D.C., Brandan, C.P., Petroselli, G., Erra-Balsells, R., Audisio, M.C. "Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains" . Microbiological Research, vol. 211, 2018, pp. 21-30.
http://dx.doi.org/10.1016/j.micres.2018.04.003
---------- VANCOUVER ----------
Sabaté, D.C., Brandan, C.P., Petroselli, G., Erra-Balsells, R., Audisio, M.C. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiol Res. 2018;211:21-30.
http://dx.doi.org/10.1016/j.micres.2018.04.003