Given a eigenvalue {Mathematical expression} of {Mathematical expression} in the unit ball {Mathematical expression}, with Neumann boundary conditions, we prove that there exists a class {Mathematical expression} of {Mathematical expression}-domains, depending on {Mathematical expression}, such that if {Mathematical expression} is a no trivial solution to the following problem {Mathematical expression} in {Mathematical expression} on {Mathematical expression}, and {Mathematical expression}, with {Mathematical expression}, and {Mathematical expression}, then {Mathematical expression} is a ball. Here {Mathematical expression} is a eigenvalue of {Mathematical expression} in {Mathematical expression}, with Neumann boundary conditions. © 2013 Springer-Verlag Berlin Heidelberg.
| Documento: | Artículo |
| Título: | Stability results for the {Mathematical expression}-dimensional Schiffer conjecture via a perturbation method |
| Autor: | Canuto, B. |
| Filiación: | Conicet, Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Esmeralda 2043, Florida, 1602, Argentina |
| Idioma: | Inglés |
| Palabras clave: | Mathematics Subject Classification: 35N05 |
| Año: | 2013 |
| Página de inicio: | 1 |
| Página de fin: | 30 |
| DOI: | http://dx.doi.org/10.1007/s00526-013-0637-1 |
| Título revista: | Calculus of Variations and Partial Differential Equations |
| Título revista abreviado: | Calc. Var. Partial Differ. Equ. |
| ISSN: | 09442669 |
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09442669_v_n_p1_Canuto |