Artículo

Ortiz, E.V.; Bennardi, D.O.; Bacelo, D.E.; Fioressi, S.E.; Duchowicz, P.R. "The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants" (2017) Environmental Science and Pollution Research. 24(35):27366-27375
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k OH ) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares. The best multivariable linear regression (MLR) models are found with the replacement method variable subset selection technique. The proposed five-descriptor model has the following statistics for the training set: Rtrain2=0.88, RMS train = 0.21, while for the test set is Rtest2=0.87, RMS test = 0.11. This QSPR serves as a rational guide for predicting oxidation processes of micropollutants. © 2017, Springer-Verlag GmbH Germany.

Registro:

Documento: Artículo
Título:The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants
Autor:Ortiz, E.V.; Bennardi, D.O.; Bacelo, D.E.; Fioressi, S.E.; Duchowicz, P.R.
Filiación:IMCoDeG (CONICET), Facultad de Tecnología y Ciencias Aplicadas, Universidad Nacional de Catamarca, Maximio Victoria 55, Catamarca, Argentina
Cátedra de Química Orgánica, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (UNLP), 60 y 119, La Plata, B1904AAN, Argentina
Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Buenos Aires, CP 1426, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, Diag. 113 y 64, C.C. 16, Sucursal 4, La Plata, 1900, Argentina
Palabras clave:Molecular descriptors; Quantitative structure-property relationships; Reaction rate constant; Replacement method; Water micropollutant; degradation; hydroxyl radical; molecular analysis; oxidation; pollutant; quantitative analysis; reaction rate; regression analysis; replacement; water pollution; water treatment; hydroxyl radical; chemistry; conformation; oxidation reduction reaction; procedures; quantitative structure activity relation; statistical model; theoretical model; water management; water pollutant; Hydroxyl Radical; Linear Models; Models, Theoretical; Molecular Conformation; Oxidation-Reduction; Quantitative Structure-Activity Relationship; Water Pollutants, Chemical; Water Purification
Año:2017
Volumen:24
Número:35
Página de inicio:27366
Página de fin:27375
DOI: http://dx.doi.org/10.1007/s11356-017-0315-5
Título revista:Environmental Science and Pollution Research
Título revista abreviado:Environ. Sci. Pollut. Res.
ISSN:09441344
CODEN:ESPLE
CAS:hydroxyl radical, 3352-57-6; Hydroxyl Radical; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09441344_v24_n35_p27366_Ortiz

Referencias:

  • (2016), http://www.acdlabs.com; Aranda, J.F., Garro Martinez, J.C., Castro, E.A., Duchowicz, P.R., Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds (2016) Int J Mol Sci, 17, pp. 1247-1255
  • Bagheri, M., Mohseni, M., A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water (2015) J Hazard Mater, 294, pp. 1-8. , COI: 1:CAS:528:DC%2BC2MXks12hsbw%3D
  • Benfenati, E., (2013) Theory, guidance and applications on QSAR and REACH, , http://ebook.insilico.eu/insilico-ebook-orchestra-benfenati-ed1_rev-June2013.pdf, Orchestra
  • Borhani, T.N.G., Saniedanesh, M., Bagheri, M., Lim, J.S., QSPR prediction of the hydroxyl radical rate constant of water contaminants (2016) Water Res, 98, pp. 344-353. , COI: 1:CAS:528:DC%2BC28Xms1Oqsrk%3D
  • Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., Critical review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (OH/O − ) in aqueous solution (1988) J Phys Chem Ref Data, 17, pp. 513-886. , COI: 1:CAS:528:DyaL1cXlvFyisLc%3D
  • Delgado, L.F., Charles, P., Glucina, K., Morlay, C., QSAR-like models: a potential tool for the selection of PhACs and EDCs for monitoring purposes in drinking water treatment systems—a review (2012) Water Res, 46, pp. 6196-6209. , COI: 1:CAS:528:DC%2BC38XhsVKitL7O
  • Diudea, M.V.E., (2001) QSPR/QSAR studies by molecular descriptors, , Nova Science Publishers, New York
  • Draper, N.R., Smith, H., (1981) Applied regression analysis, , John Wiley&Sons, New York
  • Duchowicz, P.R., Castro, E.A., Fernández, F.M., Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies (2006) MATCH Commun Math Comput Chem, 55, pp. 179-192. , COI: 1:CAS:528:DC%2BD2sXps1SmsQ%3D%3D
  • Duchowicz, P.R., Comelli, N.C., Ortiz, E.V., Castro, E.A., QSAR study for carcinogenicity in a large set of organic compounds (2012) Curr Drug Safe, 7, pp. 282-288. , COI: 1:CAS:528:DC%2BC3sXht1yhtL7P
  • Duchowicz, P.R., Bennardi, D.O., Baselo, D.E., Bonifazi, E.L., Rios-Luci, C., Padrón, J.M., Burton, G., Misico, R.I., QSAR on antiproliferative naphthoquinones based on a conformation-independent approach (2014) Eur J Med Chem, 77, pp. 176-184. , COI: 1:CAS:528:DC%2BC2cXlvF2qurg%3D
  • Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A., QSPR studies on refractive indices of structurally heterogeneous polymers (2015) Chemom Intell Lab Syst, 140, pp. 86-91. , COI: 1:CAS:528:DC%2BC2cXhvF2ru7bF
  • Elovitz, M.S., von Gunten, U., Hydroxyl radical ozone ratios during ozonation processes. I The R ct concept (1999) Ozone Sci Eng, 21, pp. 239-260. , COI: 1:CAS:528:DyaK1MXksF2rsb0%3D
  • Suite, E., U.S (2016) EPA:, , https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface, 4.11
  • Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs (2003) Environ Health Perspect, 111, pp. 1361-1375. , COI: 1:CAS:528:DC%2BD3sXnt12rtLg%3D
  • Golbraikh, A., Tropsha, A., Beware of q2! (2002) J Mol Graph Model, 20, pp. 269-276. , COI: 1:CAS:528:DC%2BD3MXpt1art7o%3D
  • Gramatica, P., Principles of QSAR models validation: internal and external (2007) QSAR Comb Sci, 26, pp. 694-701. , COI: 1:CAS:528:DC%2BD2sXmtFKjtrs%3D
  • Hansch, C., Leo, A., (1995) Exploring QSAR. fundamentals and applications in chemistry and biology, , American Chemical Society, Washington, D. C
  • Hong, H., Xie, Q., Ge, W., Qian, F., Fang, H., Shi, L., Su, Z., Tong, W., Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics (2008) J Chem Inf Model, 48, pp. 1337-1344. , COI: 1:CAS:528:DC%2BD1cXnsVehtL0%3D
  • (2016) Open Babel for Windows, , http://openbabel.org/wiki/Category:Installation
  • Jagiello, K., Grzonkowska, M., Swirog, M., Ahmed, L., Rasulev, B., Avramopoulos, A., Papadopoulos, M.G., Puzyn, T., Advantages and limitations of classic and 3D QSAR approaches in nano-QSAR studies based on biological activity of fullerene derivatives (2016) J Nanopart Res, 18, p. 256
  • Jaworska, J., Nikolova-Jeliazkova, N., Aldenberg, T., QSAR applicability domain estimation by projection of the training set in descriptor space: a review (2005) ATLA Altern Lab Anim, 18, p. 256
  • Jin, X., Peldszus, S., Huck, P.M., Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes (2012) Water Res, 46, pp. 6519-6530. , COI: 1:CAS:528:DC%2BC38XhsFansb%2FI
  • Jin, X., Peldszus, S., Huck, P.M., Predicting the reaction rate constants of micropollutants with hydroxyl radicals in water using QSPR modeling (2015) Chemosphere, 138, pp. 1-9. , COI: 1:CAS:528:DC%2BC2MXos1OntLk%3D
  • Katritzky, A.R., Goordeva, E.V., Traditional topological indices vs. electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research (1993) J Chem Inf Comput Sci, 33, pp. 835-857. , COI: 1:CAS:528:DyaK3sXmsVSqs74%3D
  • Kaufman, L., Rousseeuw, P.J., (2005) Finding groups in data: an introduction to cluster analysis, , Wiley, New York
  • Kusic, H., Rasulev, B., Leszczynska, D., Leszczynski, J., Koprivanac, N., Prediction of rate constants for radical degradation of aromatic pollutants in water matrix: a QSAR study (2009) Chemosphere, 75, pp. 1128-1134. , COI: 1:CAS:528:DC%2BD1MXltFWltbs%3D
  • Lee, Y., Gunten, U., Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment (2012) Water Res, 46, pp. 6177-6195. , COI: 1:CAS:528:DC%2BC38Xht1OntbrI
  • Lee, Y., von Gunten, U., Quantitative structure–activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment (2012) Water Res, 46, pp. 6177-6195. , COI: 1:CAS:528:DC%2BC38Xht1OntbrI
  • Leonard, J.T., Roy, K., On selection of training and test sets for the development of predictive QSAR models (2006) QSAR Comb Sci, 25, pp. 235-251. , COI: 1:CAS:528:DC%2BD28XjtVahtb4%3D
  • Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment (2014) Sci Total Environ, 473-474, pp. 619-641. , COI: 1:CAS:528:DC%2BC2cXhs1Crtb0%3D
  • The MathWorks Inc., Masachussetts (2008) USA, , http://www.mathworks.com, Matlab 7.0
  • Minakata, D., Li, K., Westerhoff, P., Crittenden, J., Development of a group contribution method to predict aqueous phase hydroxyl radical (OH) reaction rate constants (2009) Environ Sci Technol, 43, pp. 6220-6227. , COI: 1:CAS:528:DC%2BD1MXos1ehsLk%3D
  • Monod, A., Doussin, J.F., Structure-activity relationship for the estimation of OH-oxidation rate constants of aliphatic organic compounds in the aqueous phase: alkanes, alcohols, organic acids and bases (2008) Atmos Environ, 42, pp. 7611-7622. , COI: 1:CAS:528:DC%2BD1cXht1GrsLzJ
  • Morales, A.H., Duchowicz, P.R., Cabrera Pérez, M.A., Castro, E.A., Cordeiro, M.N.D.S., González, M.P., Application of the replacement method as a novel variable selection strategy in QSAR. 1. Carcinogenic potential (2006) Chemom Intell Lab Syst, 81, pp. 180-187. , COI: 1:CAS:528:DC%2BD28XivVCmtrg%3D
  • (2016), http://www.yapcwsoft.com; Peres, J.A., Dominguez, J.R., Beltran-Heredia, J., Reaction of phenolic acids with fenton-generated hydroxyl radicals: Hammett correlation (2010) Desalination, 252, pp. 167-171. , COI: 1:CAS:528:DC%2BC3cXps1ejtQ%3D%3D
  • Puzyn, T., Leszczynski, J., Cronin, M.T.D., (2010) Recent advances in QSAR studies: methods and applications: challenges and advances in computational chemistry and physics, , Springer Science&Business Media B.V, Netherlands
  • Rojas, C., Duchowicz, P.R., Tripaldi, P., Pis Diez, R., Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase (2015) J Chromatogr A, 1422, pp. 277-288. , COI: 1:CAS:528:DC%2BC2MXhs1Ort7%2FL
  • Rosenfeldt, E.J., Linden, K.G., The ROH, UV concept to characterize and the model UV/H 2 O 2 process in natural waters (2007) Environ Sci Technol, 41, pp. 2548-2553. , COI: 1:CAS:528:DC%2BD2sXitF2hur0%3D
  • Roy, K., (2015) Quantitative structure-activity relationships in drug design, predictive toxicology, and risk assessment, , IGI Global, New York
  • Roy, K., Roy, P.P., Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FAMLR, PLS, GFA, G/PLS and ANN techniques (2009) Eur J Med Chem, 44, pp. 2913-2922. , COI: 1:CAS:528:DC%2BD1MXltl2ltLc%3D
  • Roy, K., Kar, S., Ambure, P., On a simple approach for determining applicability domain of QSAR models (2015) Chemom Intell Lab Syst, 145, pp. 22-29. , COI: 1:CAS:528:DC%2BC2MXnsF2gsro%3D
  • Roy, K., Das, R.N., Ambure, P., Aher, R.B., Be aware of error measures. Further studies on validation of predictive QSAR models (2016) Chemom Intel Lab Syst, 152, pp. 18-33. , COI: 1:CAS:528:DC%2BC28Xhtlaltb4%3D
  • Rücker, C., Rücker, G., Meringer, M., Y-randomization and its variants in QSPR/QSAR (2007) J Chem Inf Model, 47, pp. 2345-2357
  • Sudhakaran, S., Amy, G.L., QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification (2013) Water Res, 47, pp. 1111-1122. , COI: 1:CAS:528:DC%2BC38XhvVKns77O
  • Sudhakaran, S., Calvin, J., Amy, G.L., QSAR models for the removal of organic micropollutants in four different river water matrices (2012) Chemosphere, 87 (2), pp. 144-150. , COI: 1:CAS:528:DC%2BC38XjtFWhtrw%3D
  • Todeschini, R., Consonni, V., (2009) Molecular descriptors for chemoinformatics (methods and principles in medicinal chemistry), , Wiley-VCH, Weinheim
  • Toropov, A.A., Toropova, A.P., Rasulev, B.F., Benfenati, E., Gini, G., Leszczynska, D., Leszczynski, J., Coral: QSPR modeling of rate constants of reactions between organic aromatic pollutants and hydroxyl radical (2012) J Comput Chem, 33, pp. 1902-1906. , COI: 1:CAS:528:DC%2BC38Xns1Wnsb8%3D
  • Yap, C.W., PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints (2011) J Comput Chem, 32, pp. 1466-1474. , COI: 1:CAS:528:DC%2BC3MXjsF2isLc%3D
  • Zimbron, J.A., Reardon, K.F., Hydroxyl free radical reactivity toward aqueous chlorinated phenols (2005) Water Res, 39, pp. 865-869. , COI: 1:CAS:528:DC%2BD2MXhslGntbc%3D

Citas:

---------- APA ----------
Ortiz, E.V., Bennardi, D.O., Bacelo, D.E., Fioressi, S.E. & Duchowicz, P.R. (2017) . The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants. Environmental Science and Pollution Research, 24(35), 27366-27375.
http://dx.doi.org/10.1007/s11356-017-0315-5
---------- CHICAGO ----------
Ortiz, E.V., Bennardi, D.O., Bacelo, D.E., Fioressi, S.E., Duchowicz, P.R. "The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants" . Environmental Science and Pollution Research 24, no. 35 (2017) : 27366-27375.
http://dx.doi.org/10.1007/s11356-017-0315-5
---------- MLA ----------
Ortiz, E.V., Bennardi, D.O., Bacelo, D.E., Fioressi, S.E., Duchowicz, P.R. "The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants" . Environmental Science and Pollution Research, vol. 24, no. 35, 2017, pp. 27366-27375.
http://dx.doi.org/10.1007/s11356-017-0315-5
---------- VANCOUVER ----------
Ortiz, E.V., Bennardi, D.O., Bacelo, D.E., Fioressi, S.E., Duchowicz, P.R. The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants. Environ. Sci. Pollut. Res. 2017;24(35):27366-27375.
http://dx.doi.org/10.1007/s11356-017-0315-5