Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We introduce new first-order languages for the elementary n-dimensional geometry and elementary n-dimensional affine geometry (n ≥ 2), based on extending FO(β≡) and FO(β), respectively, with new function symbols. Here, β stands for the betweenness relation and ≡ for the congruence relation. We show that the associated theories admit effective quantifier elimination. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Registro:

Documento: Artículo
Título:Quantifier elimination for elementary geometry and elementary affine geometry
Autor:Grimson, R.; Kuijpers, B.; Othman, W.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón I, Ciudad Universitaria), (1428 Buenos Aires, Argentina
Theoretical Computer Science Group, Hasselt University and Transnationale Universiteit Limburg, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium
Geographisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Palabras clave:Affine geometry; Euclidean geometry; Geometric constructions; Quantifier elimination; Semi-algebraic geometry
Año:2012
Volumen:58
Número:6
Página de inicio:399
Página de fin:416
DOI: http://dx.doi.org/10.1002/malq.201100095
Título revista:Mathematical Logic Quarterly
Título revista abreviado:Math. Logic Q.
ISSN:09425616
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09425616_v58_n6_p399_Grimson

Referencias:

  • Balbiani, P., Goranko, V., Kellerman, R., Vakarelov, D., Logical theories for fragments of elementary geometry (2007) Handbook of Spatial Logics, pp. 343-428. , in:, edited by M. Aiello, I. E. Pratt-Hartmann, and J. F. A. K. van Benthem (Springer-Verlag, Secaucus, NJ
  • Basu, S., Pollack, R., Roy, M.F., (2006) Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics Vol. 10, , Springer-Verlag, Secaucus, NJ
  • Bochnak, J., Coste, M., Roy, M.F., (1998) Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, , Springer-Verlag
  • Descartes, R., (1637) La Géométrie, , Ian Maire, Leiden
  • Enderton, H., (2000) A mathematical introduction to logic, , Harcourt/Academic Press
  • Gyssens, M., Van den Bussche, J., Van Gucht, D., Complete geometric query languages (1999) J. Comput. Syst. Sci., 58 (3), pp. 483-511
  • Hartshorne, R., (2000) Geometry: Euclid and Beyond, , Springer-Verlag
  • Hilbert, D., (1899) Grundlagen der Geometrie, , Teubner-Verlag, Leipzig
  • (2000) Constraint Databases, , G. Kuper, L. Libkin, and J. Paredaens, editors, Springer-Verlag
  • Marker, D., (2002) Model theory: an introduction, Graduate texts in mathematics Vol. 217, , Springer-Verlag
  • Moler, N., Suppes, P., Quantifier-free axioms for constructive plane geometry (1968) Compos. Math., 20, pp. 143-152
  • Pambuccian, V., Constructive axiomatizations of plane absolute, euclidean and hyperbolic geometry (2001) Math. Log. Q., 47 (1), pp. 129-136
  • Pambuccian, V., Axiomatizing geometric constructions (2008) J. Appl. Log., 6 (1), pp. 24-46
  • Poizat, B., (2000) A course in model theory: an introduction to contemporary mathematical logic, Universitext, , Springer-Verlag
  • Schwabhäuser, W., Über die Vollständigkeit der elementaren euklidischen Geometrie (1956) Math. Log. Q., 2 (10-15), pp. 137-165
  • Schwabhäuser, W., Szmielew, W., Tarski, A., (1983) Metamathematische Methoden in der Geometrie, Hochschultext, , Springer-Verlag
  • Shoenfield, J., (1967) Mathematical logic, , Addison-Wesley
  • Szczebra, L., Tarski, A., Metamathematical discussion of some affine geometries (1979) Fundam. Math., 104, pp. 155-192
  • Szmielew, W., (1983) From Affine to Euclidean Geometry, An Axiomatic Approach, , Kluwer Academic Publishers
  • Tarski, A., Sur les ensembles définissables de nombres réels (1931) Fundam. Math., 17, pp. 210-239
  • Tarski, A., (1951) A decision method for elementary algebra and geometry, , University of California Press, second edition
  • Tarski, A., What is elementary geometry? The Axiomatic Method, With Special Reference to Geometry and Physics. Proceedings of an International Symposium held at the Univ. of Calif., Berkeley, Dec. 26, 1957-Jan. 4, 1958, edited by L. Henkin, P. Suppes and A. Tarski, Studies in Logic and the Foundations of Mathematics (North-Holland Publishing Co., Amsterdam, 1959) 16-29; Tarski, A., Givant, S., Tarski's system of geometry (1999) Bull. Symb. Log., 5, pp. 175-214
  • Veblen, O., A system of axioms for geometry (1904) Trans. Am. Math. Soc., 5, pp. 343-384

Citas:

---------- APA ----------
Grimson, R., Kuijpers, B. & Othman, W. (2012) . Quantifier elimination for elementary geometry and elementary affine geometry. Mathematical Logic Quarterly, 58(6), 399-416.
http://dx.doi.org/10.1002/malq.201100095
---------- CHICAGO ----------
Grimson, R., Kuijpers, B., Othman, W. "Quantifier elimination for elementary geometry and elementary affine geometry" . Mathematical Logic Quarterly 58, no. 6 (2012) : 399-416.
http://dx.doi.org/10.1002/malq.201100095
---------- MLA ----------
Grimson, R., Kuijpers, B., Othman, W. "Quantifier elimination for elementary geometry and elementary affine geometry" . Mathematical Logic Quarterly, vol. 58, no. 6, 2012, pp. 399-416.
http://dx.doi.org/10.1002/malq.201100095
---------- VANCOUVER ----------
Grimson, R., Kuijpers, B., Othman, W. Quantifier elimination for elementary geometry and elementary affine geometry. Math. Logic Q. 2012;58(6):399-416.
http://dx.doi.org/10.1002/malq.201100095