Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Our hypothesis is that Lotus glaber (a glycophytic species, highly tolerant to saline-alkaline soils) displays a plastic root phenotypic response to soil salinity that may be influenced by mycorrhizal and rhizobial microorganisms. Uninoculated plants and plants colonised by Glomus intraradices or Mesorhizobium loti were exposed to either 150 or 0 mM NaCl. General plant growth and root architectural parameters (morphology and topology) were measured and phenotypic plasticity determined at the end of the salt treatment period. Two genotypes differing in their salt tolerance capacity were used in this study. G. intraradices and M. loti reduced the total biomass of non-salinised, sensitive plants, but they did not affect that of corresponding tolerant ones. Root morphology of sensitive plants was greatly affected by salinity, whereas mycorrhiza establishment counteracted salinity effects. Under both saline conditions, the external link length and the internal link length of mycorrhizal salt-sensitive plants were higher than those of uninoculated control and rhizobial treatments. The topological trend (TT) was strongly influenced by genotype x symbiosis interaction. Under non-saline conditions, nodulated root systems of the sensitive plant genotype had a more herringbone architecture than corresponding uninoculated ones. At 150 mM NaCl, nodulated root systems of tolerant plants were more dichotomous and those of the corresponding sensitive genotype more herringbone in architecture. Notwithstanding the absence of a link between TTs and variations in plant growth, it is possible to predict a dissimilar adaptation of plants with different TTs. Root colonisation by either symbiotic microorganisms reduced the level of root phenotypic plasticity in the sensitive plant genotype. We conclude that root plasticity could be part of the general mechanism of L. glaber salt tolerance only in the case of non-symbiotic plants. © 2008 Springer-Verlag.

Registro:

Documento: Artículo
Título:Phenotypic plasticity with respect to salt stress response by Lotus glaber: The role of its AM fungal and rhizobial symbionts
Autor:Echeverria, M.; Scambato, A.A.; Sannazzaro, A.I.; Maiale, S.; Ruiz, O.A.; Menéndez, A.B.
Filiación:Unidad de Biotecnología 3, IIB-IINTECH/UNSAM-CONICET, Buenos Aires, Argentina
Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, Buenos Aires 1428, Argentina
Palabras clave:Glomus intraradices; Lotus glaber; Mesorhizobium loti; Phenotypic plasticity; Salt stress; sodium chloride; environmental stress; fungus; legume; phenotypic plasticity; rhizobacterium; salinity; article; drug effect; fungus; growth, development and aging; heat shock response; Lotus; microbiology; mycorrhiza; phenotype; physiology; plant root; Rhizobium; species difference; symbiosis; Fungi; Heat-Shock Response; Lotus; Mycorrhizae; Phenotype; Plant Roots; Rhizobium; Sodium Chloride; Species Specificity; Symbiosis; Glomus intraradices; Lotus glaber; Mesorhizobium; Mesorhizobium loti; Mimosa
Año:2008
Volumen:18
Número:6-7
Página de inicio:317
Página de fin:329
DOI: http://dx.doi.org/10.1007/s00572-008-0184-3
Título revista:Mycorrhiza
Título revista abreviado:Mycorrhiza
ISSN:09406360
CODEN:MCORE
CAS:sodium chloride, 7647-14-5; Sodium Chloride, 7647-14-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09406360_v18_n6-7_p317_Echeverria

Referencias:

  • Aliasgharzadeh, N., Rastin, N.S., Towfighi, H., Alizadeh, A., Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil (2001) Mycorrhiza, 11, pp. 119-122
  • Al-Karaki, G.N., Hammad, R., Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress (2001) J Plant Nutr, 24, pp. 1311-1323
  • Alshammary, S.F., Qian, Y.L., Wallner, S.J., Growth response of four turfgrass species to salinity (2004) Agric Water Manage, 66, pp. 97-111
  • An, P., Inanaga, S., Li, X., Shimizu, H., Tanimoto, E., Root characteristics in salt tolerance (2003) Root Res, 12, pp. 125-132
  • Baylis, G.T.S., Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil (1970) Plant and Soil, 33, pp. 713-716
  • Barea, J.M., Tobar, R.M., Azcón-Aguilar, C., Effect of a genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa (1996) New Phytol, 134, pp. 361-369
  • Barker, S.J., Tagu, D., The roles of auxins and cytokinins in mycorrhizal symbiosis (2000) J Plant Growth Regul, 19, pp. 144-154
  • Berntson, G.M., Modelling root architecture: Are there tradeoffs between efficiency and potential of resource acquisition? (1994) New Phytol, 127, pp. 483-493
  • Berntson, G.M., Topological scaling and plant root system architecture: Developmental and functional hierarchies (1997) New Phytol, 135, pp. 621-634
  • Berta, G., Fusconi, A., Trotta, A., Scannerini, S., Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L (1990) New Phytol, 114, pp. 207-215
  • Berta, G., Trotta, A., Fusconi, A., Hooker, J.E., Munro, M., Atkinson, D., Giovannetti, M., Gianinazzi, S., Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera (1995) Tree Physiol, 5, pp. 281-293
  • Bouma, T.J., Nielsen, K.L., Van Hal, J., Koutstaal, B., Root system topology and diameter distribution of species from habitats differing in inundation frequency (2001) Funct Ecol, 15, pp. 360-369
  • Bradshaw, A.D., Evolutionary significance of phenotypic plasticity in plants (1965) Adv Genet, 13, pp. 115-155
  • Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D.E., Reich, P.B., Poorter, H., A handbook of protocols for standardised and easy measurements of plant functional traits worldwide (2003) Aust J Bot, 51, pp. 335-380
  • Cruz, C., Green, J.J., Watson, G.C., Wilson, F., Martins-Loução, M.A., Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity (2004) Mycorrhiza, 14, pp. 177-184
  • Doussan, C., Pages, L., Pierret, A., Soil exploration and resource acquisition by plant roots: An architectural and modelling point of view (2003) Agronomie, 23, pp. 419-431
  • Eissenstat, D.M., Costs and benefits of constructing roots of small diameter (1992) J Plant Nutr, 15, pp. 763-782
  • Eissenstat, D.M., Graham, J.H., Syvertsen, J.P., Drouillard, D.L., Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status (1993) Ann Bot, 71, pp. 1-10
  • Ennos, A.R., Comparative functional morphology of the anchorage systems of annual dicots (1992) Fun Ecol, 6, pp. 71-78
  • Esechie, H.A., Al-Barhi, B., Al-Gheity, S., Al-Khanjari, S., Root and shoot growth in salinity-stressed alfalfa in response to nitrogen source (2002) J Plant Nutr, 25, pp. 2559-2569
  • Feng, G., Zhang, F.S., Li, X.L., Tian, C.Y., Tang, C., Rengel, Z., Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots (2002) Mycorrhiza, 12, pp. 185-190
  • Fitter, A.H., Fitter, A.H., Atkinson, D., Read, D.J., Usher, M.B., Functional significance of morphology and root system architecture (1985) Ecological Interactions in Soil, pp. 87-106. , Blackwell Scientific Publications Oxford
  • Fitter, A.H., An architectural approach to the comparative ecology of plant root systems (1987) New Phytol, 106, pp. 61-67. , Suppl
  • Fitter, A.H., Costs and benefits of mycorrhizas: Implications for functioning under natural conditions (1991) Experientia, 47, pp. 350-355
  • Fitter, A., Waisel, Y., Eschel, A., Kafkafi, U., Characteristics and functions of roots systems (2002) Plant Roots: The Hidden Half, pp. 15-32. , Marcel Dekker New York
  • Fitter, A.H., Stickland, T.R., Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species (1991) New Phytol, 118, pp. 383-389
  • Fitter, A.H., Stickland, T.R., Harvey, M.L., Wilson, G.W., Architectural analysis of plant root systems. I Architectural correlates of exploitation efficiency (1991) New Phytol, 118, pp. 375-382
  • Fulchieri, M., Estrella, M., Iglesias, A., Characterization of Rhizobium loti strains from the Salado River Basin (2001) Antonie Van Leeuwenhoek, 79, pp. 119-125
  • Gamalero, E., Trotta, A., Massa, N., Copetta, A., Martinotti, M.G., Berta, G., Impact of two fluorescent Pseudomonas and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition (2004) Mycorrhiza, 14, pp. 185-192
  • Glimskär, A., Estimates of root system topology of five plant species grown at steady-state nutrition (2000) Plant Soil, 227, pp. 249-256
  • Graham, J.H., Syvertsen, J.P., Host determinants of mycorrhizal dependency of Citrus rootstock seedlings (1985) New Phytol, 101, pp. 667-676
  • Guan, B.H., Ge, Y., Chang, J., Phenotypic plasticity of Mosla chinensis and M. scabra (Labiatae) response to soil water status (2004) Bot Bull Ac Sin, 45, pp. 229-236
  • Gupta, R., Krishnamurthy, K.V., Response of mycorrhizal and nonmycorrhizal Arachis hypogeae to NaCl and acid stress (1996) Mycorrhiza, 6, pp. 145-149
  • Hause, B., Mrosk, C., Isayenkov, S., Strack, D., Jasmonates in arbuscular mycorrhizal interactions (2007) Phytochemistry, 68, pp. 101-110
  • Hetrick, B.A.D., Leslie, J.F., Wilson, G.T., Kitt, D.G., Physical and topological assessment of effects of a vesicular-arbuscular mycorrhizal fungus on root architecture of big bluestem (1988) New Phytol, 110, pp. 85-96
  • Hodge, A., The plastic plant: Root responses to heterogeneous supplies of nutrients (2004) New Phytol, 162, pp. 9-24
  • Hooker, J.E., Munro, M., Atkinson, D., Vesicular-arbuscular mycorrhizal fungi induced alteration in poplar root system morphology (1992) Plant Soil, 145, pp. 207-214
  • Huang, C.X., Van Steveninck, R.F.M., Salinity induced structural changes in meristematic cells of barley roots (1990) New Phytol, 115, pp. 17-22
  • Iribarne, M.I., Balagué, L.J., Diosma, G., Balatti, P.A., Capacidad de fijación de nitrógeno de estirpes autóctonas de Mesorhizobium spp. en simbiosis con dos poblaciones mejoradas de Lotus glaber (Miller) (1998) Rev Fac Agron la Plata, 103, pp. 157-164
  • Kade, M., Pagani, E.A., Mendoza, R.E., A morphological study of populations of Lotus glaber Mill (2003) (Fabaceae)-Agronomie, 23, pp. 203-207
  • Kirkbride, J.G.J., Lotus systematics and distribution (1994) CSSA Special Publication 28, pp. 1-20. , Beuselinck PR (ed) Trefoil: the science and technology of Lotus
  • Koide, R., The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection (1985) New Phytol, 99, pp. 449-462
  • Koide, R.T., Kabir, Z., Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate (2000) New Phytol, 148, pp. 511-517
  • Landwehr, M., Hildebrandt, U., Wilde, P., Nawrath, K., Toth, T., Biro, B., Bothe, H., The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils (2002) Mycorrhiza, 12, pp. 199-211
  • Lynch, J., Root architecture and plant productivity (1995) Plant Physiol, 109, pp. 7-13
  • Martínez-Sánchez, J.J., Ferrandis, P., Trabaud, L., Galindo, R., Franco, J.A., Herranz, J.M., Comparative root system structure of post-fire Pinus halepensis Mill. and Cistus monspeliensis L saplings (2003) Plant Ecol, 168, pp. 309-320
  • McConigle, T.P., Miller, M.H., Evans, D.H., Fairchild, G.L., Swan, J.A., A new method which gives and objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi (1990) New Phytol, 115, pp. 495-501
  • Mendoza, R., Phosphorus nutrition and mycorrhizal growth response of broadleaf and narrowleaf birdsfoot trefoils (2001) J Plant Nutr, 24, pp. 203-214
  • Mendoza, R., Escudero, V., García, I., Plant growth, nutrient acquisition and mycorrhizal symbiosis of a waterlogging salt-tolerant legume (Lotus glaber Mill.) in a saline-sodic soil (2005) Plant Soil, 275, pp. 305-315
  • Montes, L., Lotus tenuis (1988) Rev Arg Prod Anim, 8, pp. 367-376
  • Mujica, M.M., Rumi, C.P., A technique of vegetative propagation by stem cuttings was fitted to Lotus tenuis (1998) Lotus Newsl, 29, p. 411
  • Nielsen, K.L., Lynch, J.P., Jablokow, A.G., Curtis, P.S., Carbon costs of root systems: An architectural approach (1994) Plant Soil, 165, pp. 161-169
  • Paz, R., Sánchez, D.H., Pieckenstain, F., Maiale, S., Sannazzaro, A., Cuevas, J.C., Chiesa, A., Ruiz, O., Molecular and biochemical approximation of polyamine roles in tolerance mechanisms to salt stress in Lotus spp (2005) Lotus Newsl, 35, pp. 30-31
  • Peng, S.P., Eissenstat, D.M., Graham, J.H., Williams, K., Hodge, N.C., Growth depression in mycorrhizal citrus at high phosphorus supply: Analysis of carbon costs (1993) Plant Physiol, 101, pp. 1063-1071
  • Plenchette, C., Fortin, J.A., Furlan, V., Growth responses of several plants species to mycorrhizae in a soil of moderate P fertility. I. Mycorrhizal dependence under field conditions (1983) Plant Soil, 70, pp. 199-209
  • Poljakoff-Mayber, A., Poljakoff-Mayber, A., Gale, J., Morphological and anatomical changes in plants as a response to salinity stress (1975) Plants in Saline Environment. Ecological Studies 15, pp. 97-117. , Springer Berlin
  • Poljakoff-Mayber, A., Ecological-physiological studies on the responses of higher plants to salinity and drought (1988) Sci Rev Arid Zone Res, 6, pp. 163-183
  • Powell, C.L., Effect of P fertilizer on root morphology and P uptake of Carex coriacea (1974) Plant Soil, 41, pp. 661-667
  • Pregitzer, K.S., Deforest, J.A., Burton, A.J., Allen, M.F., Ruess, R.W., Hendrick, R.L., Fine root architecture of nine North American Trees (2002) Ecol Monogr, 72, pp. 293-309
  • Radić, S., Prolić, M., Pavlica, M., Pevalek-Kozlina, B., Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L (2005) Environ Exp Bot, 54, pp. 213-218
  • Reich, P.B., Tjoelker, M.G., Walters, M.B., Vanderklein, D.W., Buschena, C., Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light (1998) Funct Ecol, 12, pp. 327-338
  • Richardson, K.V.A., Wetten, A.C., Caligari, P.D.S., Cell and nuclear degradation in root meristems following exposure of potatoes (Solanum tuberosum L.) to salinity (2001) Potato Res, 44, pp. 389-399
  • Ruiz-Lozano, J.M., Azcon, R., Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity (2000) Mycorrhiza, 10, pp. 137-143
  • Ruiz-Lozano, J.M., Azcon, R., Gomez, M., Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants (1996) Physiol Plant, 98, pp. 767-772
  • Sannazzaro, A., Ruiz, O., Albertó, E., Menéndez, A., Presence of different arbuscular mycorrhizal infection patterns in roots of Lotus glaber plants growing in the Salado River basin (2004) Mycorrhiza, 14, pp. 139-142
  • Sannazzaro, A.I., Ruíz, O.A., Alberto, E.O., Menéndez, A.B., Alleviation of salt stress in Lotus glaber by Glomus intraradices (2006) Plant Soil, 285, pp. 279-287
  • Sannazzaro, A.I., Echeverria, M., Albertó, E.O., Ruíz, O.A., Menéndez, A.B., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza (2007) Plant Physiol Biochem, 45, pp. 39-46
  • Schachtman, D.P., Kelman, W.M., Potential for Lotus germplasm for the development of salt, aluminium and manganese salt-tolerant pasture plants (1991) Aust J Agric Res, 42, pp. 139-149
  • Schellenbaum, L., Berta, G., Ravolanirina, F., Tisserant, B., Ganinazzi, S., Gianinazzi-Pearson, V., Fitter, A.H., Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.) (1991) Ann Bot, 68, pp. 135-141
  • Schlichting, C.D., Editorial: Phenotypic plasticity in plants (2002) Plant Species Biol, 17, pp. 85-88
  • Šmilauerová, M., Šmilauer, P., Morphological responses of plant roots to heterogeneity of soil resources (2002) New Phytol, 154, pp. 703-715
  • Smith, F.A., Smith, S.E., Mutualism and parasitism: Diversity in function and structure in the arbuscular (VA) mycorrhizal symbiosis (1996) Adv Bot Res, 22, pp. 1-43
  • Sorgonà, A., Cacco, G., Linking the physiological parameters of nitrate uptake with root morphology and topology in wheat (Triticum durum) and citrus (Citrus volkameriana) rootstock (2002) Can J Bot, 80, pp. 494-503
  • Stofella, S., Posse, G., Collantes, M., Variabilidad fenotípica y genotípica de poblaciones de Lotus tenuis que habitan suelos con distinto pH (1998) Ecol Aus, 8, pp. 57-63
  • Teakle, N.L., Real, D., Colmer, T.D., Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus glaber (2006) Plant Soil, 289, pp. 369-383
  • Teakle, N.L., Flowers, T.J., Real, D., Colmer, T.D., Lotus glaber tolerates the interactive effects of salinity and waterlogging by 'excluding' Na+ and Cl- from the xylem (2007) J Exp Bot, 58, pp. 2169-2180
  • Trencia, J., Identification de descripteurs morphomètriques sensibles aux conditions gènèrales de croissance des semis de chêne rouge (Quercus rubra) en milieu naturel (1995) Can J Forest Res, 25, pp. 157-165
  • Tricot, F., Crozat, Y., Pellerin, S., Root system growth and nodule establishment on pea (Pisum sativum L.) (1997) J Exp Bot, 48, pp. 1935-1941
  • Valladares, F., Wright, S.J., Lasso, E., Kitajima, K., Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest (2000) Ecol, 81, pp. 1925-1936
  • Waisel, Y., Eshel, A., Differences in ion uptake among roots of various types (1992) J Plant Nutr, 15, pp. 945-958
  • West-Eberhard, M.J., Phenotypic plasticity and the origins of diversity (1989) Ann Rev Ecolog Syst, 20, pp. 249-278
  • Wright, I.J., Westoby, M., Differences in seedling growth behaviour among species: Trait correlations across species, and trait shifts along nutrient compared to rainfall gradients (1999) J Ecol, 87, pp. 85-97

Citas:

---------- APA ----------
Echeverria, M., Scambato, A.A., Sannazzaro, A.I., Maiale, S., Ruiz, O.A. & Menéndez, A.B. (2008) . Phenotypic plasticity with respect to salt stress response by Lotus glaber: The role of its AM fungal and rhizobial symbionts. Mycorrhiza, 18(6-7), 317-329.
http://dx.doi.org/10.1007/s00572-008-0184-3
---------- CHICAGO ----------
Echeverria, M., Scambato, A.A., Sannazzaro, A.I., Maiale, S., Ruiz, O.A., Menéndez, A.B. "Phenotypic plasticity with respect to salt stress response by Lotus glaber: The role of its AM fungal and rhizobial symbionts" . Mycorrhiza 18, no. 6-7 (2008) : 317-329.
http://dx.doi.org/10.1007/s00572-008-0184-3
---------- MLA ----------
Echeverria, M., Scambato, A.A., Sannazzaro, A.I., Maiale, S., Ruiz, O.A., Menéndez, A.B. "Phenotypic plasticity with respect to salt stress response by Lotus glaber: The role of its AM fungal and rhizobial symbionts" . Mycorrhiza, vol. 18, no. 6-7, 2008, pp. 317-329.
http://dx.doi.org/10.1007/s00572-008-0184-3
---------- VANCOUVER ----------
Echeverria, M., Scambato, A.A., Sannazzaro, A.I., Maiale, S., Ruiz, O.A., Menéndez, A.B. Phenotypic plasticity with respect to salt stress response by Lotus glaber: The role of its AM fungal and rhizobial symbionts. Mycorrhiza. 2008;18(6-7):317-329.
http://dx.doi.org/10.1007/s00572-008-0184-3