Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A group of eight CMIP5 models are used to evaluate how much of the future changes in winter precipitation can be explained by changes in frontal activity over the Southern Hemisphere (SH). The frontal activity is calculated at the 850 hPa level using the cyclonic vorticity, the horizontal gradient of temperature and the specific humidity. The changes are evaluated taking into account the historical and the RCP45 experiments. Changes in frontal activity are positive over most of the SH, being the areas with the largest increases over the mid to high latitudes. Most of these changes are driven especially by the changes in the specific humidity. The precipitation change shows a decrease at subtropical latitudes, mostly associated with a decrease in non frontal precipitation, controlled by a decrease in relative humidity and in moisture flux convergence. At mid to higher latitudes, the precipitation responds to increases in both frontal and non frontal precipitation, associated with increasing frontal activity and relative humidity and increases in the moisture flux convergence at the lower levels of the atmosphere, respectively. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models
Autor:Blázquez, J.; Solman, S.A.
Filiación:Centro de Investigaciones del Mar y la Atmósfera (CIMA-CONICET/FCEN-UBA), Instituto Franco Argentino del Clima y sus Impactos (UMI IFAECI/CNRS), Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata. (FCAG/UNLP), Ciudad Universitaria Pabellón II Piso 2, Buenos Aires, C1428EGA, Argentina
Departamento de Ciencias de la Atmósfera y los Océanos (FCEN-UBA), Centro de Investigaciones del Mar y la Atmósfera (CIMA-CONICET/FCEN-UBA), Instituto Franco Argentino del Clima y sus Impactos (UMI IFAECI/CNRS), Ciudad Universitaria Pabellón II Piso 2, Buenos Aires, C1428EGA, Argentina
Palabras clave:CMIP5 models; Fronts; Precipitation; Southern Hemisphere; Wintertime
Año:2018
DOI: http://dx.doi.org/10.1007/s00382-018-4482-y
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v_n_p_Blazquez

Referencias:

  • Bengtsson, L., Hodges, K.I., Storm tracks and climate change (2006) J Clim, 19, pp. 3518-3543
  • Berry, G., Reeder, M.J., Jakob, C., A global climatology of atmospheric fronts (2011) Geophys Res Lett, 38, p. L04809
  • Blázquez, J., Solman, S.A., Fronts and precipitation in CMIP5 models for the austral winter of the Southern Hemisphere (2018) Clim Dyn, 50, pp. 2705-2717
  • Bretherton, C.S., Peters, M.E., Back, L.E., Relationships between water vapor path and precipitation over the tropical oceans (2004) J Clim, 17, p. 15171528
  • Catto, J.L., Jakob, C., Berry, G., Nicholls, N., Relating global precipitation to atmospheric fronts (2012) Geophys Res Lett, 39, p. LI0805
  • Catto, J.L., Nicholls, N., Jakob, C., Shelton, K.L., Atmospheric fronts in current and future climates (2014) Geophys Res Lett, 41, pp. 7642-7650
  • Chang, E.K.M., Guo, Y., Xia, X., CMIP5 multimodel ensemble projection of storm track change under global warming (2012) J Geophys Res, 117, p. D23118
  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Wehner, M., Long-term climate change: projections, commitments and irreversibility (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the intergovernmental panel on climate change, , Stocker TF, QiPlattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, (eds), Cambridge University Press, Cambridge
  • Dai, A., Precipitation characteristics in eighteen coupled climate models (2006) J Clim, 19, pp. 4605-4630
  • Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Vuichard, N., Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 (2013) Clim Dyn, 40, pp. 2123-2165
  • Knutti, R., Sedlácek, J., Robustness and uncertainties in the new CMIP5 climate model projections (2013) Nat Clim Change, 3, pp. 369-373
  • Lehmann, J., Coumou, D., Frieler, K., Eliseev, A.V., Levermann, A., Future changes in extratropical storm tracks and baroclinicity under climate change (2014) Environ Res Lett, 9, p. 084002
  • Lim, E.P., Simmonds, I., Effects of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones (2009) Clim Dyn, 33, pp. 19-32
  • Naud, C.M., Posselt, D.J., van den Heever, S.C., Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere warm fronts (2012) J Clim, 25, pp. 5135-5151
  • Pfahl, S., Wernli, H., Quantifying the relevance of cyclones for precipitation extremes (2012) J Clim, 25, pp. 6770-6780
  • Seth, A., Rauscher, S.A., Biasutti, M., Giannini, A., Camargo, S., Rojas, M., CMIP5 projected changes in the annual cycle of precipitation in monsoon regions (2013) J Clim, 26, p. 73287351
  • Solman, S.A., Orlanski, I., Climate change over the extratropical southern hemisphere: the tale from an ensemble of reanalysis datasets (2016) J Clim, 29, pp. 1673-1687
  • Stephens, G.L., Ellis, T.D., Controls of global-mean precipitation increases in global warming GCM experiments (2008) J Clim, 21, pp. 6141-6155
  • Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bull Am Meteorol Soc, 93, pp. 485-498
  • Thomson, A.M., Calvin, K.V., Smith, S.J., Kyle, G.P., Volke, A., Patel, P., Delgado-Arias, S., Edmonds, J.A., RCP4.5: a pathway for stabilization of radiative forcing by 2100 (2011) Clim Change, 109, pp. 77-94
  • Trenberth, K.E., Changes in precipitation with climate change (2011) Clim Res, 47, pp. 123-138
  • Utsumi, N., Kim, H., Kanae, S., Oki, T., Which weather systems are projected to cause future changes in mean and extreme precipitation in CMIP5 simulations? (2016) J Geophys Res Atmos, 121, pp. 10522-10537
  • Utsumi, N., Kim, H., Kanae, S., Oki, T., Relative contributions of weather systems to mean and extreme global precipitation (2017) J Geophys Res Atmos, 122, pp. 152-167
  • Wallace, J.M., Lim, G.H., Blackmon, M.L., Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides (1988) J Atmos Sci, 45, pp. 439-462
  • Yin, J.H., A consistent poleward shift of the storm tracks in simulations of 21st century climate (2005) Geophys Res Lett, 32, p. L18701

Citas:

---------- APA ----------
Blázquez, J. & Solman, S.A. (2018) . Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models. Climate Dynamics.
http://dx.doi.org/10.1007/s00382-018-4482-y
---------- CHICAGO ----------
Blázquez, J., Solman, S.A. "Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models" . Climate Dynamics (2018).
http://dx.doi.org/10.1007/s00382-018-4482-y
---------- MLA ----------
Blázquez, J., Solman, S.A. "Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models" . Climate Dynamics, 2018.
http://dx.doi.org/10.1007/s00382-018-4482-y
---------- VANCOUVER ----------
Blázquez, J., Solman, S.A. Relationship between projected changes in precipitation and fronts in the austral winter of the Southern Hemisphere from a suite of CMIP5 models. Clim. Dyn. 2018.
http://dx.doi.org/10.1007/s00382-018-4482-y