Artículo

Zaninelli, P.G.; Menéndez, C.G.; Falco, M.; López-Franca, N.; Carril, A.F."Future hydroclimatological changes in South America based on an ensemble of regional climate models" (2019) Climate Dynamics. 52(1-2):819-830
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Changes between two time slices (1961–1990 and 2071–2100) in hydroclimatological conditions for South America have been examined using an ensemble of regional climate models. Annual mean precipitation (P), evapotranspiration (E) and potential evapotranspiration (E P ) are jointly considered through the balances of land water and energy. Drying or wetting conditions, associated with changes in land water availability and atmospheric demand, are analysed in the Budyko space. The water supply limit (E limited by P) is exceeded at about 2% of the grid points, while the energy limit to evapotranspiration (E = E P ) is overall valid. Most of the continent, except for the southeast and some coastal areas, presents a shift toward drier conditions related to a decrease in water availability (the evaporation rate E/P increases) and, mostly over much of Brazil, to an increase in the aridity index (Ф = E P /P). These changes suggest less humid conditions with decreasing surface runoff over Amazonia and the Brazilian Highlands. In contrast, Argentina and the coasts of Ecuador and Peru are characterized by a tendency toward wetter conditions associated with an increase of water availability and a decrease of aridity index, primarily due to P increasing faster than both E and E P . This trend towards wetter soil conditions suggest that the chances of having larger periods of flooding and enhanced river discharges would increase over parts of southeastern South America. Interannual variability increases with Ф (for a given time slice) and with climate change (for a given aridity regimen). There are opposite interannual variability responses to the cliamte change in Argentina and Brazil by which the variability increases over the Brazilian Highlands and decreases in central-eastern Argentina. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:Future hydroclimatological changes in South America based on an ensemble of regional climate models
Autor:Zaninelli, P.G.; Menéndez, C.G.; Falco, M.; López-Franca, N.; Carril, A.F.
Filiación:Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), CONICET, Universidad de Buenos Aires, Pabellon 2, Piso 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos (UMI3351-IFAECI/CNRS-CONICET-UBA), Buenos Aires, Argentina
Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
Palabras clave:Aridity index; Budyko space; Climate change; Hydroclimate of South America; Regional climate models
Año:2019
Volumen:52
Número:1-2
Página de inicio:819
Página de fin:830
DOI: http://dx.doi.org/10.1007/s00382-018-4225-0
Handle:http://hdl.handle.net/20.500.12110/paper_09307575_v52_n1-2_p819_Zaninelli
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v52_n1-2_p819_Zaninelli

Referencias:

  • Adler, R.F., Huffman, G.J., Chang, A., The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present) (2003) J Hydrometeorol, 4, pp. 1147-1167
  • Arora, V.K., The use of the aridity index to assess climate change effect on annual runoff (2002) J Hydrol, 265, pp. 164-177
  • Bombardi, R.J., Carvalho, L.M.V., IPCC global coupled model simulations of the South America monsoon system (2009) Clim Dyn, 33, pp. 893-916
  • Boulanger, J., Carril, A., Sanchez, E., CLARIS-La Plata Basin: regional hydroclimate variability, uncertainties and climate change scenarios (2016) Clim Res, 68, pp. 93-94
  • Budyko, M.I., (1974) Climate and Life. International Geophysical Series, 18. , Academic Press, New York
  • Budyko, M.I., (1982) The earth’s climate: past and future, p. 307. , Academic Press, New York
  • Carrão, H., Naumann, G., Barbosa, P., Global projections of drought hazard in a warming climate: A prime for disaster risk management (2017) Clim Dyn, pp. 1-19. , https://doi.org/10.1007/s00382-017-3740-8
  • Carril, A.F., Menéndez, C.G., Remedio, A.R.C., Performance of a multi-RCM ensemble for South Eastern South America (2012) Clim Dyn, 39, pp. 2747-2768
  • Carril, A., Cavalcanti, I., Menéndez, C., Extreme events in the La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project (2016) Clim Res, 68, pp. 95-116
  • Castro, M., Fernández, C., Gaertner, M.A., Description of a mesoscale atmospheric numerical model (1993) Math Clim Environ, pp. 230-253
  • Cavalcanti, I.F.A., Carril, A.F., Penalba, O.C., Precipitation extremes over La Plata Basin—review and new results from observations and climate simulations (2015) J Hydrol, 523, pp. 211-230
  • Chen, M., Shi, W., Xie, P., Assessing objective techniques for gauge-based analyses of global daily precipitation (2008) J Geophys Res, 113, p. D04110
  • Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Whetton, P., Regional climate projections (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change, pp. 847-940. , Solomon S, QiManning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, (eds), Cambridge University Press, Cambridge
  • Christensen, J.H., Krishna Kumar, K., Aldrian, E., An, S.-I., Cavalcanti, I.F.A., de Castro, M., Dong, W., Zhou, T., Climate phenomena and their relevance for future regional climate change (2013) Climate Change 2013—the Physical Science Basis, pp. 1217-1308. , https://doi.org/10.1017/CBO9781107415324.028, Intergovernmental Panel on Climate Change (ed), Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
  • Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Wehner, M., Long-term climate change: projections, commitments and irreversibility (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, , Stocker TF, QiPlattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, (eds), Cambridge University Press, Cambridge
  • da Rocha, R.P., Morales, C.A., Cuadra, S.V., Ambrizzi, T., Precipitation diurnal cycle and summer climatology assessment over South America: an evaluation of regional climate model version 3 simulations (2009) J Geophys Res, 114, p. D10108
  • Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., (2014) Climate change 2014: impacts, adaptation, and vulnerability: Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change, , Cambridge University Press, Cambridge
  • Franchito, S.H., Reyes, J.F.P., Surrogate climate change scenario and projections with a regional climate model: impact on the aridity in South America (2014) Am J Clim Change, 3, pp. 474-489
  • Gao, X., Giorgi, F., Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model (2008) Glob Planet Change, 62, pp. 195-209
  • Gordon, C., Cooper, C., Senior, C.A., The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments (2000) Clim Dyn, 16, pp. 147-168
  • Greve, P., Seneviratne, S.I., Assessment of future changes in water availability and aridity (2015) Geophys Res Lett, 42, pp. 5493-5499
  • Greve, P., Orlowsky, B., Mueller, B., Global assessment of trends in wetting and drying over land (2014) Nat Geosci, 7, pp. 716-721
  • Greve, P., Gudmundsson, L., Orlowsky, B., Seneviratne, S.I., A two-parameter Budyko function to represent conditions under which evapotranspiration exceeds precipitation (2016) Hydrol Earth Syst Sci, 20, pp. 2195-2205
  • Jacob, D., Van den Hurk, B.J.J.M., Andræ, U., A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period (2001) Meteorol Atmos Phys, 77, pp. 19-43
  • Jaramillo, F., Destouni, G., Developing water change spectra and distinguishing change drivers worldwide (2014) Geophys Res Lett, 41, pp. 8377-8386
  • Karlsson, K.-G., Riihelä, A., Müller, R., CLARA-A1: a cloud, albedo, and radiation dataset from 28 year of global AVHRR data (2013) Atmos Chem Phys, 13, pp. 5351-5367
  • Koster, R.D., Suarez, M.J., A simple framework for examining the interannual variability of land surface moisture fluxes (1999) J Clim, 12, pp. 1911-1917
  • Llopart, M., Coppola, E., Giorgi, F., da Rocha, R., Cuadra, S.V., Climate change impact on precipitation for the Amazon and La Plata basins (2014) Clim Change, 125 (1), pp. 111-125
  • López-Franca, N., Zaninelli, P.G., Carril, A.F., Changes in temperature extremes for 21st century scenarios over South America derived from a multi-model ensemble of regional climate models (2016) Clim Res
  • Menéndez, C.G., Zaninelli, P.G., Carril, A.F., Sánchez, E., Hydrological cycle, temperature, and land surface–atmosphere interaction in the La Plata Basin during summer: response to climate change (2016) Clim Res, 68, pp. 231-241
  • Mo, K.C., Berbery, E.H., Drought and persistent wet spells over South America based on observations and the U.S. CLIVAR drought experiments (2011) J Clim, 24, pp. 1801-1820
  • Mueller, B., Hirschi, M., Jimenez, C., Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis (2013) Hydrol Earth Syst Sci Discuss, 10, pp. 769-805
  • Orlowsky, B., Seneviratne, S.I., Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections (2013) Hydrol Earth Syst Sci, 17, pp. 1765-1781
  • Peixoto, J.P., Oort, A.H., (1992) Physics of climate, , American Institute of Physics, New York
  • Penalba, O.C., Rivera, J.A., Future changes in drought characteristics over southern South America projected by a CMIP5 multi-model ensemble (2013) Am J Clim Change, 2, pp. 173-182
  • Penalba, O.C., Rivera, J.A., Comparación de seis índices para el monitoreo de sequías meteorológicas en el sur de Sudamérica (2015) Meteorologica, 40, pp. 33-57. , Centro Argentino de Meteorólogos
  • Roderick, M.L., Sun, F., Lim, W.H., Farquhar, G.D., A general framework for understanding the response of the water cycle to global warming over land and ocean (2014) Hydrol Earth Syst Sci, 18, pp. 1575-1589
  • Roeckner, E., Brokopf, R., Esch, M., Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model (2006) J Clim, 19, pp. 3771-3791
  • Ruscica, R.C., Sörensson, A.A., Menéndez, C.G., Pathways between soil moisture and precipitation in southeastern South America (2015) Atmos Sci Lett, 16 (3), pp. 267-272
  • Ruscica, R.C., Menéndez, C.G., Sörensson, A.A., Land surface–atmosphere interaction in future South American climate using a multi-model ensemble (2016) Atmos Sci Lett, 17, pp. 141-147
  • Samuelsson, P., Jones, C.G., Willén, U., The Rossby centre regional climate model RCA3: model description and performance (2011) Tellus A Dyn Meteorol Oceanogr, 63, pp. 4-23
  • Sánchez, E., Solman, S., Remedio, A.R.C., Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America (2015) Clim Dyn
  • Seneviratne, S.I., Nicholls, N., Easterling, D., Changes in climate extremes and their impacts on the natural physical environment (2012) Managing the risks of extreme events and disasters to advance climate change adaptation, pp. 109-230. , Field CB, Barros V, Stocker TF, (eds), Cambridge University Press, Cambridge
  • Sherwood, S., Fu, Q., A drier future? (2014) Science, 343, pp. 737-739
  • Sörensson, A.A., Menéndez, C.G., Summer soil precipitation coupling in South America (2011) Tellus Ser A Dyn Meterol Oceanogr, 63, pp. 56-68
  • Sörensson, A.A., Ruscica, R.C., Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America (2018) Water Resour Res
  • van der Velde, Y., Vercauteren, N., Jaramillo, F., Exploring hydroclimatic change disparity via the Budyko framework (2014) Hydrol Process, 28, pp. 4110-4118
  • Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index (2010) J Clim, 23, pp. 1696-1718
  • Wickham, H., (2009) ggplot2: elegant graphics for data analysis, version 2.0.0, , Springer, New York
  • Wilks, D.S., (2011) Statistical methods in the atmospheric sciences, , Academic Press, New York

Citas:

---------- APA ----------
Zaninelli, P.G., Menéndez, C.G., Falco, M., López-Franca, N. & Carril, A.F. (2019) . Future hydroclimatological changes in South America based on an ensemble of regional climate models. Climate Dynamics, 52(1-2), 819-830.
http://dx.doi.org/10.1007/s00382-018-4225-0
---------- CHICAGO ----------
Zaninelli, P.G., Menéndez, C.G., Falco, M., López-Franca, N., Carril, A.F. "Future hydroclimatological changes in South America based on an ensemble of regional climate models" . Climate Dynamics 52, no. 1-2 (2019) : 819-830.
http://dx.doi.org/10.1007/s00382-018-4225-0
---------- MLA ----------
Zaninelli, P.G., Menéndez, C.G., Falco, M., López-Franca, N., Carril, A.F. "Future hydroclimatological changes in South America based on an ensemble of regional climate models" . Climate Dynamics, vol. 52, no. 1-2, 2019, pp. 819-830.
http://dx.doi.org/10.1007/s00382-018-4225-0
---------- VANCOUVER ----------
Zaninelli, P.G., Menéndez, C.G., Falco, M., López-Franca, N., Carril, A.F. Future hydroclimatological changes in South America based on an ensemble of regional climate models. Clim. Dyn. 2019;52(1-2):819-830.
http://dx.doi.org/10.1007/s00382-018-4225-0