Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In Part I of our study (Zazulie et al. Clim Dyn, 2017, hereafter Z17) we analyzed the ability of a subset of fifteen high-resolution global climate models (GCMs) from the Coupled Model Intercomparison Project phase 5 to reproduce the past climate of the Subtropical Central Andes (SCA) of Argentina and Chile. A subset of only five GCMs was shown to reproduce well the past climate (1980–2005), for austral summer and winter. In this study we analyze future climate projections for the twenty-first century over this complex orography region using those five GCMs. We evaluate the projections under two of the representative concentration pathways considered as future scenarios: RCP4.5 and RCP8.5. Future projections indicate warming during the twenty-first century over the SCA region, especially pronounced over the mountains. Projections of warming at high elevations in the SCA depend on altitude, and are larger than the projected global mean warming. This phenomenon is expected to strengthen by the end of the century under the high-emission scenario. Increases in winter temperatures of up to 2.5 °C, relative to 1980–2005, are projected by 2040–2065, while a 5 °C warming is expected at the highest elevations by 2075–2100. Such a large monthly-mean warming during winter would most likely result in snowpack melting by late winter-early spring, with serious implication for water availability during summer, when precipitation is a minimum over the mountains. We also explore changes in the albedo, as a contributing factor affecting the net flux of energy at the surface and found a reduction in albedo of 20–60% at high elevations, related to the elevation dependent warming. Furthermore, a decrease in winter precipitation is projected in central Chile by the end of the century, independent of the scenario considered. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: future projections for the twenty-first century
Autor:Zazulie, N.; Rusticucci, M.; Raga, G.B.
Filiación:Departamento de Ciencias de la Atmósfera y los Océanos, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Unidad Mixta Internacional – Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI-IFAECI), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
Palabras clave:CMIP5 models; Elevation-dependent warming; Future projections; Model evaluation; Subtropical Central Andes; albedo; climate modeling; climate prediction; CMIP; global climate; regional climate; snowpack; twenty first century; warming; Andes; Argentina; Chile
Año:2018
Volumen:51
Número:7-8
Página de inicio:2913
Página de fin:2925
DOI: http://dx.doi.org/10.1007/s00382-017-4056-4
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v51_n7-8_p2913_Zazulie

Referencias:

  • Aceituno, P., Fuenzalida, H., Rosenbluth, B., Climate along the extratropical west coast of South America (1993) Earth system responses to global change: contrasts between North and South America, pp. 61-72. , Mooney HA, Fuentes ER, Kronberg BI, (eds), Academic Press, New York
  • Barros, V., Castañeda, M.E., Doyle, M., Recent precipitation trends in southern South America east of the Andes: An indication of climate variability (2000) Southern Hemisphere Paleo and Neo-Climates, pp. 187-206. , Smolka, Volkheimer W, (eds), Springer, Berlin
  • Barros, V.R., Boninsegna, J.A., Camilloni, I.A., Chidiak, M., Magrín, G.O., Rusticucci, M., Climate change in Argentina: trends, projections, impacts and adaptation (2015) WIREs Clim Change
  • Beniston, M., Climatic change in mountain regions: a review of possible impacts (2003) Clim Change, 59, pp. 5-31
  • Beniston, M., Diaz, H., Bradley, R., Climatic change at high elevation sites: an overview (1997) Clim Change, 36, pp. 233-251
  • Blazquez, J., Nuñez, M.N., Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models (2013) Clim Dyn, 41, pp. 1039-1056
  • Bradley, R.S., Keimig, F.T., Diaz, H.F., Projected temperature changes along the American cordillera and the planned GCOS network (2004) Geophys Res Lett, 31, p. L16210
  • Bradley, R.S., Vuille, M., Diaz, H.F., Vergara, W., Threats to water supplies in the tropical Andes (2006) Science, 312, pp. 1755-1756
  • Falvey, M., Garreaud, R.D., Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006) (2009) J Geophys Res, 114, p. D04102
  • Fyfe, J.C., Flato, G.M., Enhanced climate change and its detection over the Rocky Mountains (1999) J Clim, 12, pp. 230-243
  • Le Quesne, C., Acuña, C., Boninsegna, J., Rivera, A., Barichivich, J., Long-term glacier variations in the Central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation (2009) Palaeoecology, 281, pp. 234-244
  • Liu, X., Cheng, Z., Yan, L., Yin, Z.-Y., Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings (2009) Glob Planet Change, 68, pp. 164-174
  • Masiokas, M.H., Villalba, R., Luckman, B., Le Quesne, C., Aravena, J.C., Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: large-scale atmospheric influences and implications for water resources in the region (2006) J Clim, 19, pp. 6334-6352
  • Minetti, J.L., Vargas, W.M., Trends and jumps in the annual precipitation in South America south of the 15°S (1998) Atmosfera, 11, pp. 205-221
  • Minetti, J.L., Vargas, W.M., Poblete, A.G., Acuña, L.R., Casagrande, G., Non-linear trends and low frequency oscillations in annual precipitation over Argentina and Chile, 1931–1999 (2003) Atmosfera, 16, pp. 119-135
  • Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Wilbanks, T.J., The next generation of scenarios for climate change research and assessment (2010) Nature, 463, pp. 747-756
  • Palazzi, E., Filippi, L., von Hardenberg, J., Insights into elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model simulations (2016) Clim Dyn
  • Palomino-Lemus, R., Córdoba-Machado, S., Gámiz-Fortis, S.R., Castro-Díez, Y., Esteban-Parra, M.J., Summer precipitation projections over northwestern South America from CMIP5 models (2015) Global Planet Change, 131, pp. 11-23
  • Pepin, N., Bradley, R.S., Diaz, H.F., Baraer, M., Caceres, E.B., Forsythe, N., Fowler, H., Yang, D.Q., Elevation dependent warming in the mountain regions of the world (2015) Nat Clim Change, 5, pp. 424-430
  • Rangecroft, S., Suggitt, A.J., Anderson, K., Harrison, S., Future climate warming and changes to mountain permafrost in the Bolivian Andes (2016) Clim Change, 137, pp. 231-243
  • Rangwala, I., Sinsky, E., Miller, J.R., Amplified warming projections for high altitude regions of the northern hemisphere midlatitudes from CMIP5 models (2013) Environ Res Lett, 8, p. 024040
  • Rangwala, I., Sinsky, E., Miller, J.R., Variability in projected elevation dependent warming in boreal midlatitude winter in CMIP5 climate models and its potential drivers (2016) Clim Dyn, 46, pp. 2115-2122
  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Rafaj, P., RCP 8.5-a scenario of comparatively high greenhouse gas emissions (2011) Clim Change, 109, pp. 33-57
  • Rosenblüth, B., Fuenzalida, H., Aceituno, P., Recent temperature variations in southern South America (1997) Int J Climatol, 17, pp. 67-85
  • Rusticucci, M., Zazulie, N., Raga, G.B., Regional winter climate of the southern central Andes: assessing the performance of ERA-Interim for climate studies (2014) J Geophys Res, 119, pp. 8568-8582
  • Stocker, T.F., Qin, D., Plattner, G.-K., Alexander, L.V., Allen, S.K., Bindoff, N.L., Bréon, F.-M., Xie, S.-P., Technical summary (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, , Stocker TF, QiPlattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, (eds), Cambridge University Press, Cambridge
  • Taylor, K.E., Stouffer, R.J., Meehl, G.A., An over-view of CMIP5 and the experiment design (2012) Bull Am Meteorol Soc, 93, pp. 485-498
  • Thomson, A.M., Calvin, K.V., Smith, S.J., Kyle, G.P., Volke, A., Patel, P., Delgado-Arias, S., Edmonds, J.A., RCP4.5: a pathway for stabilization of radiative forcing by 2100 (2011) Clim Change, 109, pp. 77-94
  • van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Rose, S.K., The representative concentration pathways: An overview (2011) Clim Change, 109, pp. 5-31
  • Viale, M., Nuñez, M.N., Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics (2011) J Hydrometeorol, 12, pp. 481-507
  • Vincent, L.A., Peterson, T.C., Barros, V.R., Marino, M.B., Rusticucci, M., Carrasco, G., Ramirez, E., Karoly, D., Observed trends in indices of daily temperature extremes in South America 1960 – 2000 (2005) J Clim, 18, pp. 5011-5023
  • Viviroli, D., Dürr, H.H., Messerli, B., Meybeck, M., Weingartner, R., Mountains of the world, water towers for humanity: typology, mapping, and global significance (2007) Water Resour Res, 43, p. W07447
  • Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B.G., Bradley, R.S., Climate change and tropical Andean glaciers: past, present and future (2008) Earth Sci Rev, 89, pp. 79-96
  • Zazulie, N., Rusticucci, M., Raga, G.B., Regional climate of the subtropical central Andes using high-resolution CMIP5 models. Part I: past performance (1980–2005) (2017) Clim Dyn, 49, p. 3937
  • Zubler, E.M., Fischer, A.M., Fröb, F., Liniger, M.A., Climate change signals of CMIP5 general circulation models over the Alps—impact of model selection (2015) Int J Climatol

Citas:

---------- APA ----------
Zazulie, N., Rusticucci, M. & Raga, G.B. (2018) . Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: future projections for the twenty-first century. Climate Dynamics, 51(7-8), 2913-2925.
http://dx.doi.org/10.1007/s00382-017-4056-4
---------- CHICAGO ----------
Zazulie, N., Rusticucci, M., Raga, G.B. "Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: future projections for the twenty-first century" . Climate Dynamics 51, no. 7-8 (2018) : 2913-2925.
http://dx.doi.org/10.1007/s00382-017-4056-4
---------- MLA ----------
Zazulie, N., Rusticucci, M., Raga, G.B. "Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: future projections for the twenty-first century" . Climate Dynamics, vol. 51, no. 7-8, 2018, pp. 2913-2925.
http://dx.doi.org/10.1007/s00382-017-4056-4
---------- VANCOUVER ----------
Zazulie, N., Rusticucci, M., Raga, G.B. Regional climate of the Subtropical Central Andes using high-resolution CMIP5 models. Part II: future projections for the twenty-first century. Clim. Dyn. 2018;51(7-8):2913-2925.
http://dx.doi.org/10.1007/s00382-017-4056-4