Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP–CFSR reanalysis. On average, we found that NCEP–CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (−0.5 °C) in SST, 6 W/m2 (−4 W/m2) in SHF and 12 W/m2 (−9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil–Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected. © 2016, Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions
Autor:Leyba, I.M.; Saraceno, M.; Solman, S.A.
Filiación:Centro de Investigaciones del Mar y la Atmósfera, CONICET-Universidad de Buenos Aires, Departamento de Ciencias de la Atmósfera y los Océanos/FCEN, UMI IFAECI/CNRS, Ciudad Universitaria, Pabellón II, 2do Piso, Buenos Aires, C1428EGA, Argentina
Palabras clave:Heat flux; Mesoscale eddies; South Atlantic; air-sea interaction; heat flow; latent heat flux; mesoscale eddy; sea surface temperature; sensible heat flux; turbulence; Atlantic Ocean; Atlantic Ocean (Southwest); Calluna vulgaris
Año:2017
Volumen:49
Número:7-8
Página de inicio:2491
Página de fin:2501
DOI: http://dx.doi.org/10.1007/s00382-016-3460-5
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v49_n7-8_p2491_Leyba

Referencias:

  • Barreiro, M., Chang, P., Saravanan, R., Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model (2002) J Clim, 15 (7), pp. 745-763
  • Barros, V., Gonzalez, M., Liebmann, B., Camilloni, I., Influence of the South Atlantic convergence zone and SouthAtlantic Sea surface temperature on interannual summerrainfall variability in Southeastern South America (2000) Theor Appl Climatol, 67 (3-4), pp. 123-133
  • Byrne, D., Papritz, L., Frenger, I., Münnich, M., Gruber, N., Atmospheric response to mesoscale sea surface temperature anomalies: assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic* (2015) J Atmos Sci, 72 (5), pp. 1872-1890
  • Cayan, D.R., Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature (1992) J Phys Oceanogr, 22 (8), pp. 859-881
  • Chelton, D.B., The impact of SST specification on ECMWF surface wind stress fields in the eastern tropical Pacific (2005) J Clim, 18, pp. 530-550
  • Chelton, D.B., Ocean-atmosphere coupling: mesoscale eddy effects (2013) Nat Geosci, 6, pp. 594-595
  • Chelton, D.B., Xie, S., Coupled ocean-atmosphere interaction at oceanic mesoscales (2010) Oceanography, 23 (4), pp. 52-69
  • Chelton, D.B., Schlax, M.G., Witter, D.L., Richman, J.G., Geosat altimeter observations of the surface circulation of the Southern ocean (1990) J Geophys Res, 95 (C10), pp. 17877-17903
  • Chelton, D.B., Schlax, M.G., Samelson, R.M., de Szoeke, R.A., Global observations of large oceanic eddies (2007) Geophys Res Lett, 34 (15), p. L15606
  • Chelton, D.B., Schlax, M.G., Samelson, R.M., Global observations of nonlinear mesoscale eddies (2011) Prog Oceanogr, 91 (2), pp. 167-216
  • de Souza, R.B., Mata, M.M., Garcia, C.A., Kampel, M., Oliveira, E.N., Lorenzzetti, J.A., Multi-sensor satellite and in situ measurements of a warm core ocean eddy south of the Brazil–Malvinas Confluence region (2006) Remote Sens Environ, 100 (1), pp. 52-66
  • Diaz, A.F., Studzinski, C.D., Mechoso, C.R., Relationships between precipitation anomalies in Uruguay and southern Brazil and sea surface temperature in the Pacific and Atlantic Oceans (1998) J Clim, 11 (2), pp. 251-271
  • Frenger, I., Gruber, N., Knutti, R., Munnich, M., Imprint of Southern Oceaneddies on winds, clouds and rainfall (2013) Nat Geosci
  • Gaube, P., Chelton, D.B., Strutton, P.G., Behrenfeld, M.J., Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies (2013) J Geophys Res Oceans, 118, pp. 6349-6370
  • Gordon, A.L., South Atlantic thermocline ventilation (1981) Deep Sea Res I Oceanogr Res Pap, 28 (11), pp. 1239-1264
  • Hausmann, U., Czaja, A., The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport (2012) Deep Sea Res I Oceanogr Res Pap, 70, pp. 60-72
  • Klein, P., Lapeyre, G., The oceanic vertical pump induced by mesoscale and submesoscale turbulence (2009) Annu Rev Mar Sci, 1, pp. 351-375
  • McGillicuddy, D.J., Robinson, A.R., Interaction between the oceanic mesoscale and the surface mixed layer (1997) Dyn Atmos Oceans, 27, pp. 549-574
  • Nardelli, B.B., Vortex waves and vertical motion in a mesoscale cyclonic eddy (2013) J Geophys Res Oceans, 118 (10), pp. 5609-5624
  • Piola, A.R., Gordon, A.L., Intermediate waters in the southwest South Atlantic (1989) Deep Sea Res A, 36, pp. 1-16
  • Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., The NCEP climate forecast system reanalysis (2010) Bull Am Meteorol Soc, 91 (8), p. 1015
  • Samelson, R.M., Skyllingstad, E.D., Chelton, D.B., Esbensen, S.K., O’Neill, L.W., Thum, N., On the coupling of wind stress and sea surface temperature (2006) J Clim, 19 (8), pp. 1557-1566
  • Saraceno, M., Provost, C., On eddy polarity distribution in the Southwestern Atlantic (2012) Deep Sea Res I, 69 (11), pp. 62-69
  • Saraceno, M., Provost, C., Piola, A.R., Bava, J., Gagliardini, A., Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data (2004) J Geophys Res Oceans, 109, p. C05027
  • Saraceno, M., Provost, C., Zajaczkovski, U., Long-term variation in the anticyclonic ocean circulation over the Zapiola Rise as observed by satellite altimetry: evidence of possible collapses (2009) Deep Sea Res I Oceanogr Res Pap, 56 (7), pp. 1077-1092
  • Souza, J.M.A.C., De Boyer Montegut, C., Le Traon, P.Y., Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean (2011) Ocean Sci, 7 (3), pp. 317-334
  • Souza, J.M.A.C., Chapron, B., Autret, E., The surface thermal signature and air–sea coupling over the Agulhas rings propagating in the South Atlantic Ocean interior (2014) Ocean Sci, 10 (4), pp. 633-644
  • Tilburg, C.E., Subrahmanyam, B., O’Brien, J.J., Ocean color variability in the Tasman Sea (2002) Geophys Res Lett, 29 (10), p. 1487
  • Trenberth, K.E., Fasullo, J.T., Kiehl, J., Earth’s global energy budget (2009) Bull Am Meteorol Soc, 90 (3), p. 311
  • Villas Bôas, A.B., Sato, O.T., Chaigneau, A., Castelão, G.P., The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean (2015) Geophys Res Lett, 42 (6), pp. 1856-1862
  • Xie, S., Satellite observations of cool ocean-atmosphere interaction (2004) Bull Am Meteorol Soc, 85, pp. 195-208
  • Yu, L., Weller, R.A., Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005) (2007) Bull Am Meteorol Soc, 88 (4), p. 2007

Citas:

---------- APA ----------
Leyba, I.M., Saraceno, M. & Solman, S.A. (2017) . Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions. Climate Dynamics, 49(7-8), 2491-2501.
http://dx.doi.org/10.1007/s00382-016-3460-5
---------- CHICAGO ----------
Leyba, I.M., Saraceno, M., Solman, S.A. "Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions" . Climate Dynamics 49, no. 7-8 (2017) : 2491-2501.
http://dx.doi.org/10.1007/s00382-016-3460-5
---------- MLA ----------
Leyba, I.M., Saraceno, M., Solman, S.A. "Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions" . Climate Dynamics, vol. 49, no. 7-8, 2017, pp. 2491-2501.
http://dx.doi.org/10.1007/s00382-016-3460-5
---------- VANCOUVER ----------
Leyba, I.M., Saraceno, M., Solman, S.A. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions. Clim. Dyn. 2017;49(7-8):2491-2501.
http://dx.doi.org/10.1007/s00382-016-3460-5