Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work presents an assessment of the predictability and skill of climate anomalies over South America. The study was made considering a multi-model ensemble of seasonal forecasts for surface air temperature, precipitation and regional circulation, from coupled global circulation models included in the Climate Historical Forecast Project. Predictability was evaluated through the estimation of the signal-to-total variance ratio while prediction skill was assessed computing anomaly correlation coefficients. Both indicators present over the continent higher values at the tropics than at the extratropics for both, surface air temperature and precipitation. Moreover, predictability and prediction skill for temperature are slightly higher in DJF than in JJA while for precipitation they exhibit similar levels in both seasons. The largest values of predictability and skill for both variables and seasons are found over northwestern South America while modest but still significant values for extratropical precipitation at southeastern South America and the extratropical Andes. The predictability levels in ENSO years of both variables are slightly higher, although with the same spatial distribution, than that obtained considering all years. Nevertheless, predictability at the tropics for both variables and seasons diminishes in both warm and cold ENSO years respect to that in all years. The latter can be attributed to changes in signal rather than in the noise. Predictability and prediction skill for low-level winds and upper-level zonal winds over South America was also assessed. Maximum levels of predictability for low-level winds were found were maximum mean values are observed, i.e. the regions associated with the equatorial trade winds, the midlatitudes westerlies and the South American Low-Level Jet. Predictability maxima for upper-level zonal winds locate where the subtropical jet peaks. Seasonal changes in wind predictability are observed that seem to be related to those associated with the signal, especially at the extratropics. © 2016, Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Climate predictability and prediction skill on seasonal time scales over South America from CHFP models
Autor:Osman, M.; Vera, C.S.
Filiación:Ciudad Universitaria, Pabellón II-2do. Piso, Buenos Aires, C1428EGA, Argentina
Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA), UMI IFAECI/CNRS, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:El Niño Southern Oscillation; Precipitation; Seasonal predictability; South America; Temperature; air temperature; climate modeling; climate variation; correlation; El Nino-Southern Oscillation; ensemble forecasting; precipitation (climatology); prediction; seasonal variation; zonal wind; South America
Año:2017
Volumen:49
Número:7-8
Página de inicio:2365
Página de fin:2383
DOI: http://dx.doi.org/10.1007/s00382-016-3444-5
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v49_n7-8_p2365_Osman

Referencias:

  • Arora, V., Scinocca, J., Boer, G., Christian, J., Denman, K.L., Flato, G., Kharin, V., Merryfield, W., Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases (2011) Geophys Res Lett, 38, p. L05805
  • Barreiro, M., Influence of ENSO and the South Atlantic Ocean on climate predictability over Southeastern South America (2010) Clim Dyn, 35, pp. 1493-1508
  • Barreiro, M., Chang, P., Saravanan, R., Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J Clim (2002) doi:10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2
  • Barreiro, M., Chang, P., Saravanan, R., Simulated precipitation response to SST forcing and potential predictability in the region of the South Atlantic convergence zone (2005) Clim Dyn
  • Becker, E., van den Dool, H., Zhang, Q., Predictability and forecast skill in NMME (2014) J Clim, 27, pp. 5891-5906
  • Chaves, R.R., Nobre, P., Interactions between the South Atlantic Ocean and the atmospheric circulation over South America (2004) Geophys Res Lett, 31, p. L03204
  • Colman, R., Deschamps, L., Naughton, M., Rikus, L., Sulaiman, A., Puri, K., Roff, G., Embury, G., BMRC atmospheric model (BAM) version 3.0: comparison with mean climatology. BMRC research report no. 108 (2005) Bur Met, , Melbourne, Australia
  • DelSole, T., Kumar, A., Jha, B., Potential seasonal predictability: comparison between empirical and dynamical model estimates (2013) Geophys Res Lett, 40, pp. 3200-3206
  • Feng, X., DelSole, T., Houser, P., Bootstrap estimated seasonal potential predictability of global temperature and precipitation (2011) Geophys Res Lett, 38, p. L07702
  • Feng, X., DelSole, T., Houser, P., A method for estimating potential seasonal predictability: analysis of covariance (2012) J Clim, 25, pp. 5292-5308
  • Frumkin, A., Misra, V., Predictability of dry season reforecasts over the tropical and the sub-tropical South American region (2013) Int J Climatol, 33, pp. 137-1247
  • Gueremy, J.F., Deque, M., Brau, A., Piedelievre, J.P., Actual and potential skill of seasonal predictions using the CNRM contribution to DEMETER: coupled versus uncoupled model (2005) Tellus, 57A, pp. 308-319
  • Hagedorn, R., Doblas-Reyes, F.J., Palmer, T.N., The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept (2005) Tellus A, 57, pp. 219-233
  • Hagedorn, R., Doblas-Reyes, F.J., Palmer, T.N., DEMETER and the application of seasonal forecasts (2006) Predictability of weather and climate, pp. 674-692. , Palmer T, Hagendom R, (eds), Cambridge University Press, Cambridge
  • Jha, B., Kumar, A., A comparative analysis of change in the first and second moment of the PDF of seasonal mean 200-mb heights with ENSO SSTs (2009) J Clim, 22, pp. 1412-1423
  • Kalnay, The NCEP/NCAR 40-year reanalysis project (1996) Bull Am Meteorol Soc, 77, pp. 437-470
  • Kirtman, B., Pirani, A., The state of the art of seasonal prediction: outcomes and recommendations from the first world climate research program workshop on seasonal prediction (2009) Bull Am Meteorol Soc, 90, pp. 455-458
  • Kumar, A., Hoerling, M.P., Annual cycle of Pacific-North American seasonal predictability associated with different phases of ENSO (1998) J Clim, 11, pp. 3295-3308
  • Kumar, A., Jha, B., Zhang, Q., Bounoua, L., A new methodology for estimating the unpredictable component of seasonal atmospheric variability (2007) Mon Weather Rev, 20, pp. 3888-3901
  • Landman, W.A., Goddard, L., Statistical recalibration of GCM forecasts over Southern Africa using model output statistics (2002) J Clim, 15, pp. 2038-2055
  • Li, H., Misra, V., Global seasonal climate predictability in a two tiered forecast system. Part II: boreal winter and spring seasons (2014) Clim Dyn, 42, p. 1449
  • Marsland, S., Haak, H., Jungclaus, J.H., Latif, M., Röske, F., The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates (2003) Ocean Model, 5 (2), pp. 91-127
  • Misra, V., An evaluation of the predictability of austral summer season precipitation over South America (2004) J Clim, 17, pp. 1161-1175
  • Misra, V., Li, H., Wu, Z., Di Napoli, S., Global seasonal climate predictability in a two tiered forecast system: part I: boreal summer and fall seasons (2014) Clim Dyn, 42, p. 1425
  • Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., The new ECMWF seasonal forecast system (System 4) (2011) ECMWF Technical Memorandum, p. 656
  • (2010) Assessment of intraseasonal to interannual climate prediction and predictability, , The National Academies Press, Washington
  • Nobre, P., Seasonal-to-decadal predictability and prediction of South American climate. White Paper prepared for the CLIVAR Workshop on Atlantic Predictability Reading (2004) UK, 19–23 April, p. 2004
  • Osman, M., Vera, C.S., Doblas-Reyes, F.J., Predictability of the tropospheric circulation in the Southern Hemisphere from CHFP models (2016) Clim Dyn, 46 (7), pp. 2423-2434
  • Peng, P., Kumar, A., Wang, W., An analysis of seasonal predictability in coupled model forecasts (2011) Clim Dyn, 36, pp. 637-648
  • Quan, X.W., Webster, P.J., Moore, A.M., Chang, H.R., Seasonality in SST-forced atmospheric short-term climate predictability (2004) J Clim, 17, pp. 3090-3108
  • Rowell, D.P., Assessing potential seasonal predictability with an ensemble of multidecadal GCM simulations (1998) J Clim, 11, pp. 109-120
  • Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., Van den Dool, H.M., Xie, P., The NCEP climate forecast system (2006) J Clim, 19, pp. 3483-3517
  • Scaife, A.A., Skillful long-range prediction of European and North American winters (2014) Geophys Res Lett, 41, pp. 2514-2519
  • Schiller, A., Godfrey, J.S., McIntosh, P.C., Meyers, G., Smith, N.R., Alves, O., Wang, G., Fiedler, R., A new version of the Australian community ocean model for seasonal climate prediction (2002) CSIRO marine research report no, p. 240
  • Schubert, S.D., Suarez, M.J., Pegion, P.J., Kistler, M.A., Kumar, A., Predictability of zonal means during boreal summer (2002) J Clim, 15, pp. 420-434
  • Scinocca, J.F., McFarlane, N.A., Lazare, M., Li, J., The CCCma third generation AGCM and its extension into the middle atmosphere (2008) Atmos Chem Phys, 8, pp. 7055-7074
  • Smith, D., Scaife, A.A., Kirtman, B.P., What is the current state of scientific knowledge with regard to seasonal and decadal forecasting? (2012) Environ Res Lett, 7, p. 15602
  • Stefanova, L., Misra, V., O’Brien, J.J., Hindcast skill and predictability for precipitation and two-meter air temperature anomalies in global circulation models over the Southeast United States (2012) Clim Dyn, 38, p. 161
  • Stevens, The atmospheric component of the MPI earth system model: ECHAM6 (2013) J Adv Model Earth Syst
  • Stockdale, T.N., Anderson, D.L.T., Balmaseda, M.A., Doblas-Reyes, F.J., Ferranti, L., Mogensen, K., Palmer, T.N., Vitart, F., ECMWF seasonal forecast system 3 and its prediction of sea surface temperature (2011) Clim Dyn
  • Taschetto, A.S., Wainer, I., Reproducibility of South American Precipitation due to Subtropical South Atlantic SSTs (2008) J Clim
  • Van den Dool, H., (2007) Empirical methods in short-term climate prediction, , Oxford University Press, Oxford
  • Vera, C., Baez, J., Douglas, M., Emmanuel, C.B., Marengo, J., Meitin, J., Nicolini, M., Zipser, E., The South American low-level jet experiment (2006) Bull Am Meteorol Soc, 87, pp. 63-77
  • Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Zhang, C., Toward a unified view of the American monsoon systems (2006) J Clim, 19, pp. 4977-5000
  • Watanabe, M., Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity (2010) J Clim, 23, pp. 6312-6335
  • Wu, R., Kirtman, B.P., Changes in spread and predictability associated with ENSO in an ensemble coupled GCM (2006) J Clim, 19, pp. 4378-4396
  • Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, Y.T., Kitoh, A., A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance (2012) J Meterol Soc Jpn, 90A, pp. 23-64
  • Zipser, E.J., Cecil, D.J., Liu, C., Nesbitt, S.W., Yorty, D.P., Where are the most intense thunderstorms on earth? (2006) Bull Am Meteorol Soc, 87, pp. 1057-1071
  • Zwiers, F.W., Wang, X.L., Sheng, J., Effects of specifying bottom boundary conditions in an ensemble of atmospheric GCM simulations (2000) J Geophys Res Atmos, 105, pp. 7295-7315

Citas:

---------- APA ----------
Osman, M. & Vera, C.S. (2017) . Climate predictability and prediction skill on seasonal time scales over South America from CHFP models. Climate Dynamics, 49(7-8), 2365-2383.
http://dx.doi.org/10.1007/s00382-016-3444-5
---------- CHICAGO ----------
Osman, M., Vera, C.S. "Climate predictability and prediction skill on seasonal time scales over South America from CHFP models" . Climate Dynamics 49, no. 7-8 (2017) : 2365-2383.
http://dx.doi.org/10.1007/s00382-016-3444-5
---------- MLA ----------
Osman, M., Vera, C.S. "Climate predictability and prediction skill on seasonal time scales over South America from CHFP models" . Climate Dynamics, vol. 49, no. 7-8, 2017, pp. 2365-2383.
http://dx.doi.org/10.1007/s00382-016-3444-5
---------- VANCOUVER ----------
Osman, M., Vera, C.S. Climate predictability and prediction skill on seasonal time scales over South America from CHFP models. Clim. Dyn. 2017;49(7-8):2365-2383.
http://dx.doi.org/10.1007/s00382-016-3444-5