La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Recent studies have shown that global warming and associated sea-surface temperature (SST) changes may trigger an important rainfall increase in southeastern South America (SESA) during the austral summer (December-January-February, DJF). The goal of this paper is to provide some insight into processes which may link global and SESA changes. For this purpose, a "two-way nesting" system coupling interactively the regional and global versions of the LMDZ4 atmospheric model is used to study the response to prescribed SST changes. The regional model is a variable-grid version of the global model, with a zoom focused over South America. An ensemble of simulations forced by distinct patterns of DJF SST changes has been carried out using a decomposition of full SST changes into their longitudinal and latitudinal components. The full SST changes are based on projections for the end of the twenty-first century from a multi-model ensemble of WCRP/CMIP3. Results confirm the presence of a major rainfall dipole structure, characterized by an increase in SESA and a decrease in the South Atlantic Convergence Zone region. Rainfall changes found in the WCRP/CMIP3 models are largely explained as a response of this dipole structure to the zonally-asymmetric (or longitudinal) component of SST changes. The rainfall response to the zonal-mean (or latitudinal) SST changes (including the global warming signal itself) shows an opposite contribution. The processes explaining the role of zonally-asymmetric SST changes involve remote effects of SST warming over the equatorial Indian and Pacific oceans inducing an atmospheric wave-train extended across the South Pacific into South America. © 2013 Springer-Verlag Berlin Heidelberg.


Documento: Artículo
Título:Impact of projected SST changes on summer rainfall in southeastern South America
Autor:Junquas, C.; Vera, C.S.; Li, L.; Le Treut, H.
Filiación:Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, UPMC/CNRS, Paris, France
Centro de Investigaciones Del Mar y la Atmosfera (CIMA/CONICET-UBA), DCAO/FCEN, UMI IFAECI/CNRS, Buenos Aires, Argentina
Palabras clave:Climate change; Rainfall changes; Sea surface temperature projections; South America climate; Two-way nesting system; atmospheric modeling; atmospheric transport; climate modeling; convergence; global warming; rainfall; sea surface temperature; summer; twenty first century; Atlantic Ocean; Atlantic Ocean (South); Indian Ocean; Indian Ocean (Equatorial); Pacific Ocean; Pacific Ocean (Equatorial); South America
Página de inicio:1569
Página de fin:1589
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.


  • Allen, M.R., Ingram, W.J., Constraints on future changes in climate and the hydrologic cycle (2002) Nature, 419, pp. 224-232
  • Barreiro, M., Tippmann, A., Atlantic modulation of el nino influence on summertime rainfall over southeastern south America (2008) Geophys Res Lett, 35, pp. L16704. , doi:10.1029/2008GL035019
  • Barros, V., Doyle, M., Camilloni, I., Precipitation trends in southeastern south America: relationship with Enso phases and with low-level circulation (2008) Theor Appl Clim, 93, pp. 19-33
  • Cai, W., Sullivan, A., Cowan, T., Ribbe, J., Shi, G., Simulation of the Indian Ocean dipole: a relevant criterion for selecting models for climate projections (2011) Geophys Res Lett, 38, pp. L03704. , doi:10.1029/2010GL046242
  • Cai, W., van Rensch, P., Cowan, T., Hendon, H.H., Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall (2011) Bull Am Meteorol Soc, 24, pp. 3910-3923
  • Chan, S.C., Behera, S.K., Yamagata, T., Indian Ocean dipole influence on South American rainfall (2008) Geophys Res Lett, 36, pp. L14S12. , doi:10.1029/2008GL034204
  • Chen, T., Weng, S., Schubert, S., Maintenance of austral summertime uppertropospheric circulation over tropical south America: the bolivian high-nordeste low system (1999) J Atmos Sci, 56, pp. 2081-2100
  • Chen, W., Jiang, Z., Li, L., Yiou, P., Simulation of regional climate change under the IPCC A2 scenario in southeast China (2011) Clim Dyn, 36, pp. 491-507
  • Chou, C., Neelin, J.D., Mechanisms of global warming impacts on regional tropical precipitation (2004) J Clim, 17, pp. 2688-2701
  • Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Whetton, P., Regional climate projections (2007) Climate change 2007: The physical science basis, , In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
  • Codron, F., Sadourny, R., Saturation limiters for water vapour advection schemes: impact on orographic precipitation (2002) Tellus A, 54, pp. 338-349
  • Collins, M., An, S., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F., Jochum, M., Timmermann, A., The impact of global warming on the tropical pacific ocean and el niño (2010) Nat Geosci, 3, pp. 391-397
  • Doyle, M., Barros, V., Midsummer low-level circulation and precipitation in subtropical south America and related sea surface temperature anomalies in the south Atlantic (2002) J Clim, 15, pp. 3394-3410
  • Gastineau, G., Le Treut, H., Li, L., Hadley circulation changes under global warming conditions indicated by coupled climate models (2008) Tellus A, 60, pp. 863-884
  • Gastineau, G., Li, L., Le Treut, H., The hadley and walker circulation changes in global warming conditions described by idealized atmospheric simulations (2009) J Clim, 22, pp. 3993-4013
  • Gates, W.L., AMIP: the atmospheric model intercomparison project (1992) Bull Am Meteorol Soc, 73, pp. 1962-1970
  • Grimm, A., Barros, V., Doyle, M., Climate variability in southern south america associated with el niño and la niña events (2000) J Clim, 13, pp. 35-58
  • Hoffman, J., Maps of mean temperature and precipitation (1975) Clim Atlas S Am, 1, pp. 1-28
  • Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J., Fairhead, L., Grandpeix, J., The lmdz4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection (2006) Clim Dyn, 27 (7), pp. 787-813
  • Huffman, G.J., Bolvin, D.T., Adler, R.F., (2011) GPCP version 2. 2 combined precipitation data set, ,, WDC-A, NCDC, Asheville, NC. Data set accessed at
  • Summary for policymakers (2007) Climate change 2007: The physical science basis, , IPCC, In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
  • Junquas, C., Vera, C., Li, L., Le Treut, H., Summer precipitation variability over southeastern south America in a global warming scenario (2012) Clim Dyn, 38, pp. 1867-1883
  • Krishnamurti, T., Kanamitsu, M., Koss, W., Lee, J., Tropical east-west circulations during the northern winter (1973) J Atmos Sci, 30, pp. 780-787
  • Labraga, J., Frumento, O., López, M., The atmospheric water vapor cycle in south America and the tropospheric circulation (2000) J Clim, 13, pp. 1899-1915
  • Li, Z., Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994 (1999) J Clim, 12, pp. 986-1001
  • Lorenz, P., Jacob, D., Influence of regional scale information on the global circulation: a two-way nesting climate simulation (2005) Geophys Res Lett, 32, pp. L18706. , doi:10.1029/2005GL023351
  • Lu, J., Vecchi, G.A., Reichler, T., Expansion of the hadley cell under global warming (2007) Geophys Res Lett, 34, pp. L06805. , doi:10.1029/2006GL028443
  • Marengo, J., Soares, W., Saulo, C., Nicolini, M., Climatology of the low-level jet east of the andes as derived from the NCEP-NCAR reanalyses: characteristics and temporal variability (2004) J Clim, 17, pp. 2261-2280
  • Marti, O., The new IPSL climate system model: IPSL-CM4 (2005) Note du Pôle de Modélisation, (26). ,, Institut Pierre Simon Laplace des Sciences de l'Environnement Global, Paris
  • Paegle, J., Mo, K., Linkages between summer rainfall variability over south America and sea surface temperature anomalies (2002) J Clim, 15, pp. 1389-1407
  • Robertson, A., Mechoso, C., Interannual and interdecadal variability of the south Atlantic convergence zone (2000) Mon Weather Rev, 128, pp. 2947-2957
  • Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., A dipole mode in the tropical Indian Ocean (1999) Nat, 401, pp. 360-363
  • Simmons, A., Uppala, S., Dee, D., Kobayashi, S., (2006) Era-interim: New ecmwf reanalysis products from 1989 onwards, , ecmwf, shinfield park. Reading, Berkshire RG2 9AX, UK, 25
  • Sörensson, A., Menéndez, C., Samuelsson, P., Willén, U., Hansson, U., Soil-precipitation feedbacks during the South American monsoon as simulated by a regional climate model (2010) Clim Change, 98, pp. 429-447
  • Sugi, M., Yoshimura, J., A mechanism of tropical precipitation change due to CO2 Increase (2004) J Clim, 17, pp. 238-243
  • Takahashi, K., Battisti, D.S., Processes controlling the mean tropical Pacific precipitation pattern. Part I: the Andes and the eastern Pacific ITCZ (2007) J Clim, 20, pp. 3434-3451
  • Tanaka, H., Ishizaki, N., Kitoh, A., Trend and interannual variability of walker, monsoon and hadley circulations defined by velocity potential in the upper troposphere (2004) Tellus A, 56, pp. 250-269
  • Vecchi, G., Soden, B., Global warming and the weakening of the tropical circulation (2007) J Clim, 20, pp. 4316-4340
  • Vecchi, G., Soden, B., Wittenberg, A., Held, I., Leetmaa, A., Harrison, M., Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing (2006) Nat, 441, pp. 73-76
  • Vera, C., Silvestri, G., Barros, V., Carril, A., Differences in el nino response over the southern hemisphere (2004) J Clim, 17, pp. 1741-1753
  • Vera, C., Higgins, W., Amador, J., Ambrizzi, T., Garreaud, R., Gochin, D., Gutzler, D., Zhang, C., Towards a unified view of the American monsoon system (2006) J Clim, 19, pp. 4977-5000
  • Vera, C., Silvestri, G., Liebmann, B., González, P., Climate change scenarios for seasonal precipitation in south America (2006) Geophys Res Lett, 33, pp. L13707. , doi:10.1029/2006GL025759
  • Wu, R., Kirtman, B., Regimes of seasonal air-sea interaction and implications for performance of forced simulations (2007) Clim Dyn, 29, pp. 393-410
  • Xie, P., Arkin, P., Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs (1997) Bull Am Meteorol Soc, 78, pp. 2539-2558
  • Xu, H., Wang, Y., Xie, S.-P., Effects of the Andes on eastern Pacific climate: a regional atmospheric model study (2004) J Clim, 17 (3), pp. 589-602


---------- APA ----------
Junquas, C., Vera, C.S., Li, L. & Le Treut, H. (2013) . Impact of projected SST changes on summer rainfall in southeastern South America. Climate Dynamics, 40(7-8), 1569-1589.
---------- CHICAGO ----------
Junquas, C., Vera, C.S., Li, L., Le Treut, H. "Impact of projected SST changes on summer rainfall in southeastern South America" . Climate Dynamics 40, no. 7-8 (2013) : 1569-1589.
---------- MLA ----------
Junquas, C., Vera, C.S., Li, L., Le Treut, H. "Impact of projected SST changes on summer rainfall in southeastern South America" . Climate Dynamics, vol. 40, no. 7-8, 2013, pp. 1569-1589.
---------- VANCOUVER ----------
Junquas, C., Vera, C.S., Li, L., Le Treut, H. Impact of projected SST changes on summer rainfall in southeastern South America. Clim. Dyn. 2013;40(7-8):1569-1589.