Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work focuses on the evaluation of different sources of uncertainty affecting regional climate simulations over South America at the seasonal scale, using the MM5 model. The simulations cover a 3-month period for the austral spring season. Several four-member ensembles were performed in order to quantify the uncertainty due to: the internal variability; the definition of the regional model domain; the choice of physical parameterizations and the selection of physical parameters within a particular cumulus scheme. The uncertainty was measured by means of the spread among individual members of each ensemble during the integration period. Results show that the internal variability, triggered by differences in the initial conditions, represents the lowest level of uncertainty for every variable analyzed. The geographic distribution of the spread among ensemble members depends on the variable: for precipitation and temperature the largest spread is found over tropical South America while for the mean sea level pressure the largest spread is located over the southeastern Atlantic Ocean, where large synoptic-scale activity occurs. Using nudging techniques to ingest the boundary conditions reduces dramatically the internal variability. The uncertainty due to the domain choice displays a similar spatial pattern compared with the internal variability, except for the mean sea level pressure field, though its magnitude is larger all over the model domain for every variable. The largest spread among ensemble members is found for the ensemble in which different combinations of physical parameterizations are selected. The perturbed physics ensemble produces a level of uncertainty slightly larger than the internal variability. This study suggests that no matter what the source of uncertainty is, the geographical distribution of the spread among members of the ensembles is invariant, particularly for precipitation and temperature. © 2011 Springer-Verlag.

Registro:

Documento: Artículo
Título:Evaluating uncertainties in regional climate simulations over South America at the seasonal scale
Autor:Solman, S.A.; Pessacg, N.L.
Filiación:Centro de Investigaciones del Mar y la Atmósfera CIMA/CONICET-UBA, DCAO/FCEN, UMI-IFAECI/CNRS, CIMA-Ciudad Universitaria, Pabellón II-Piso 2 (1428), Buenos Aires, Argentina
Centro Nacional Patagónico (CONICET), Puerto Madryn, Chubut, Argentina
Palabras clave:MM5 model; Regional climate modeling; South America; Uncertainty; climate modeling; ensemble forecasting; geographical distribution; parameterization; precipitation (climatology); regional climate; sea level pressure; seasonal variation; uncertainty analysis; South America
Año:2012
Volumen:39
Número:1-2
Página de inicio:59
Página de fin:76
DOI: http://dx.doi.org/10.1007/s00382-011-1219-6
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v39_n1-2_p59_Solman

Referencias:

  • Alexandru, A., de Elia, R., Laprise, R., Interanual variability in regional climate downscaling at the seasonal scale (2007) Mon Weather Rev, 135, pp. 3221-3238
  • Betts, A.K., Miller, M.J., The best Miller scheme (1993) Amer Met Soc, , The representation of cumulus convection in numerical models of the atmosphere. In: Emanuel KA, Raymond DJ (eds)
  • Bright, D., Mullen, S., The sensitivity of the numerical simulation of the southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5 (2002) Weather Forecast, 17, pp. 99-114
  • Caya, D., Biner, S., Internal variability of RCM simulations over an annual cycle (2004) Clim Dyn, 22, pp. 33-46
  • Chen, F., Dudhia, J., Coupling and advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity (2001) Mon Weather Rev, 129, pp. 569-585
  • Christensen, O.B., Gaertner, M.A., Prego, J.A., Polcher, J., Internal variability of regional climate models (2001) Clim Dyn, 17, pp. 875-887
  • Colin, J., Deque, M., Radu, R., Somot, S., Sensitivity study of heavy precipitation in limited area model climate simulations: influence of the size of the domain and the use of the spectral nudging technique (2010) Tellus, 62 A, pp. 591-604
  • de Elía, R., Laprise, R., Denis, B., Evaluation of uncertainties in the CRCM-simulated North American climate (2008) Clim Dyn, 30, pp. 113-132
  • Déqué, M., Rowell, D.P., Luthi, D., Giorgi, F., Christensen, J.H., Rockel, B., Jacobson, D., van der hurk, B., An intercomparison of regional climatic simulations for Europe: assessing uncertainties in model projections (2007) Clim Change, 81, pp. 53-70
  • Fernández, J., Montávez, J.P., Sáenz, J., González-Rouco, J.F., Zorita, E., Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle (2007) J Geophys Res, 112, pp. D04101. , doi:10.1029/2005JD00664
  • Garand, L., Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region (1983) J Atmos Sci, 40, pp. 230-244
  • Giorgi, F., Bi, X., A study of internal variability of regional climate model (2000) J Geophys Res, 105, pp. 29503-29521
  • Giorgi, F., Jones, C., Asrar, G., Addressing climate information needs at the regional level: the CORDEX framework (2009) WMO Bull, 58, pp. 175-183
  • Grell, G.A., Prognostic evaluation of assumptions used by cumulus parameterizations (1993) Mon Weather Rev, 12, pp. 764-787
  • Grell, G.A., Dudhia, J., Stauffer, D.R., (1994) A description of the fifth generation penn system/NCAR mesoscale model (MM5), , NCAR Tech Note NCAR/TN-398 + 1A
  • Hawkins, E., Sutton, R., The potential to narrow uncertainty in regional climate predictions (2009) Bull Am Meteorol Soc, 90, pp. 1095-1107
  • Hewitt, C.D., The ENSEMBLES project: providing ensemble-based predictions of climate changes and their impacts (2005) Published article appears in the EGGS newsletter, 13, pp. 22-25
  • Hsie, E.Y., Anthes, R.A., Keyser, D., Numerical simulation of frontogenesis in a moist atmosphere (1984) J Atmos Sci, 41, pp. 2581-2594
  • Jones, D., Simmonds, I., Time and space spectral analyses of southern hemisphere sea level pressure variability (1993) Mon Weather Rev, 121, pp. 661-672
  • Kain, J.S., The Kain-Fritsch convective parameterization: an update (2004) J Appl Meteorol, 43, pp. 170-181
  • Kain, J.S., Fritsch, J.M., Convective parameterization for mesoscale models: the Kain-Fritsch scheme (1993) Amer Meteor Soc, pp. 165-170. , The representation of cumulus convection in numerical models. Meteor Monogr No 24
  • Lucas-Picher, P., Caya, D., de Elía, R., Laprise, R., Investigation of regional climate models' internal variability with a ten-member ensemble of 10-year simulations over a large domain (2008) Clim Dyn, 31, pp. 927-940
  • Lynn, B., Healy, R., Druyan, L.M., Quantifying the sensitivity of simulated climate change to model configuration (2009) Clim Change, 92, pp. 275-298
  • Marengo, J.A., Ambrizzi, T., da Rocha, R., Cuadra, S.V., Alves, L.M., Valverde, M.C., Torres, R.R., Ferraz, S., Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models (2010) Clim Dyn, 35, pp. 1089-1113
  • Mearns, A multiple AOGCM and RCM climate scenario project over North America (2005) AMS 16th conference on climate variations and change, pp. 235-238. , NARCCAP (North American Regional Climate Change Assessment Program)
  • Mellor, G.L., Yamada, T., A hierarchy of turbulence closure models for planetary boundary layers (1974) J Atmos Sci, 31, pp. 1791-1806
  • Miguez-Macho, G., Stenchikov, G., Robock, A., Regional climate simulations over North America: interaction of local processes with improved large-scale flow (2005) J Clim, 18, pp. 1227-1246
  • Murphy, J.M., Sexton, D.M.H., Barnett, D.N., Jones, G.S., Webb, M.J., Collins, M., Stainforth, D.A., Quantification of modelling uncertainties in a large ensemble of climate change simulations (2004) Nature, 429, pp. 768-772
  • Murphy, J.M., Booth, B.B., Collins, M., Harris, G.R., Sexton, D.M.H., Webb, M.J., A methodology for probabilistic predictions of regional climate change from perturbed physics ensambles (2007) Phil Trans R Soc A, 365, pp. 1993-2028
  • Nogués-Paegle, J., Mo, K.C., Alternating wet and dry conditions over South America during summer (1997) Mon Weather Rev, 125, pp. 279-291
  • Nuñez, M.N., Solman, S., Cabré, M.F., Regional Climate change experiments over Southern South America. II: climate change scenarios in the late twenty first century (2009) Clim Dyn, 32, pp. 1081-1095
  • O'Brien, T., Sloan, L.C., Snyder, M.A., Can ensembles of regional climate model simulations improve results from sensitivity studies? (2010) Clim Dyn, , doi: 10. 1007/s00382-010-0900-5
  • Rauscher, S., Seth, A., Qian, J.-H., Camargo, S.J., Domain choice in a an experimental nested modeling prediction system for South America (2006) Theor Appl Climatol, 86, pp. 229-246
  • Rinke, A., Dethloff, K., Cassano, J.J., Christensen, J.H., Curry, J.A., Du, P., Girard, E., Zagar, M., Evaluation of an ensemble of Arctic regional climate models: spatiotemporal fields during the SHEBA year (2006) Clim Dyn, 6, pp. 459-472
  • Sanchez, E., Berbery, E., Solman, S., García-Ochoa, R., Samuelsson, P., Remedio, A., Jacob, D., Le Treut, H., Present climate validation of an ensemble of regional climate models over South America forced by 1989-2008 ERAinterim reanalysis (2010) Eos Trans AGU, 91 (26). , Meet Am Suppl, Abstract GC33A-02
  • Seth, A., Giorgi, F., The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model (1998) J Clim, 11, pp. 2698-2712
  • Seth, A., Rojas, M., Simulation and sensitivity in a nested modeling system for South America. Part I. Reanalysis boundary forcing (2003) J Clim, 16, pp. 2437-2453
  • Solman, S., Pessacg, N., Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model (2011) Clim Dyn, , doi: 10. 1007/s00382-011-1049-6
  • Stephens, G.L., Radiation profiles in extended water clouds: II. Parameterization schemes (1978) J Atmos Sci, 35, pp. 2123-2132
  • Tadross, M., Gutowski, W., Hewitson, W., Jack, C., New, M., MM5 simulations of interannual change and the diurnal cycle of southern African regional climate (2006) Theor Appl Climatol, 86, pp. 63-80
  • Uppala, S.M., The ERA-40 re-analysis (2005) Q J R Meteorol Soc, 131, pp. 2961-3012. , doi:10.1256/qj.04.176
  • Vanvyve, E., Hall, N., Messager, C., Leroux, S., van Ypersele, J.P., Internal variability in a regional climate model over West Africa (2008) Clim Dyn, 30, pp. 191-202
  • Wu, W., Lynch, A.H., Rivers, A., Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions (2005) J Clim, 18, pp. 917-933
  • Yang, Z., Arrit, R., Test of a perturbed physics ensemble approach for regional climate modeling (2002) J Clim, 15, pp. 2881-2896

Citas:

---------- APA ----------
Solman, S.A. & Pessacg, N.L. (2012) . Evaluating uncertainties in regional climate simulations over South America at the seasonal scale. Climate Dynamics, 39(1-2), 59-76.
http://dx.doi.org/10.1007/s00382-011-1219-6
---------- CHICAGO ----------
Solman, S.A., Pessacg, N.L. "Evaluating uncertainties in regional climate simulations over South America at the seasonal scale" . Climate Dynamics 39, no. 1-2 (2012) : 59-76.
http://dx.doi.org/10.1007/s00382-011-1219-6
---------- MLA ----------
Solman, S.A., Pessacg, N.L. "Evaluating uncertainties in regional climate simulations over South America at the seasonal scale" . Climate Dynamics, vol. 39, no. 1-2, 2012, pp. 59-76.
http://dx.doi.org/10.1007/s00382-011-1219-6
---------- VANCOUVER ----------
Solman, S.A., Pessacg, N.L. Evaluating uncertainties in regional climate simulations over South America at the seasonal scale. Clim. Dyn. 2012;39(1-2):59-76.
http://dx.doi.org/10.1007/s00382-011-1219-6