Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

December-January-February (DJF) rainfall variability in southeastern South America (SESA) is studied in 18 coupled general circulation models from the WCRP/CMIP3 dataset, for present climate and the SRES-A1B climate change scenario. The analysis is made in terms of properties of the first leading pattern of rainfall variability in the region, characterized by a dipole-like structure with centers of action in the SESA and South Atlantic Convergence Zone (SACZ) regions. The study was performed to address two issues: how rainfall variability in SESA would change in a future climate and how much of that change explains the projected increasing trends in the summer mean rainfall in SESA identified in previous works. Positive (negative) dipole events were identified as those DJF seasons with above (below) normal rainfall in SESA and below (above) normal rainfall in the SACZ region. Results obtained from the multi-model ensemble confirm that future rainfall variability in SESA has a strong projection on the changes of seasonal dipole pattern activity, associated with an increase of the frequency of the positive phase. In addition, the frequency increase of positive dipole phase in the twenty first century seems to be associated with an increase of both frequency and intensity of positive SST anomalies in the equatorial Pacific, and with a Rossby wave train-like anomaly pattern linking that ocean basin to South America, which regionally induces favorable conditions for moisture transport convergence and rainfall increase in SESA. © 2011 Springer-Verlag.

Registro:

Documento: Artículo
Título:Summer precipitation variability over Southeastern South America in a global warming scenario
Autor:Junquas, C.; Vera, C.; Li, L.; Le Treut, H.
Filiación:Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Ecole Polytechnique, UPMC/CNRS, Paris, France
Centro de Investigaciones del Mar y la Atmósfera (CIMA), DCAO/FCEyN, UMI-IFAECI CNRS-CONICET-UBA, Buenos Aires, Argentina
Palabras clave:Climate change; ENSO; Rainfall variability; South America climate; WCRP-CMIP3 multi-model dataset; climate change; convergence; El Nino-Southern Oscillation; general circulation model; global warming; moisture transfer; precipitation (climatology); rainfall; Rossby wave; sea surface temperature; summer; temperature anomaly; temporal variation; Pacific Ocean; Pacific Ocean (Equatorial); South America
Año:2012
Volumen:38
Número:9-10
Página de inicio:1867
Página de fin:1883
DOI: http://dx.doi.org/10.1007/s00382-011-1141-y
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v38_n9-10_p1867_Junquas

Referencias:

  • Berbery, E.H., Barros, V., The hydrological cycle of the La Plata Basin in South America (2002) J Hydrometeorol, 3, pp. 630-645
  • Cerne, B., Vera, C., Influence of the intraseasonal variability on heat waves in subtropical South America (2010) Clim Dyn, , (in press)
  • Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Whetton, P., Regional climate projections (2007) Climate Change 2007: The Physical Science Basis, , In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  • Delworth, T., GFDL's CM2 global coupled climate models-part 1: formulation and simulation characteristics (2006) J Clim, 19, pp. 643-674
  • Doyle, M.E., Barros, V.R., Midsummer low-level circulation and precipitation in subtropical South America and related sea surface temperature anomalies in the South Atlantic (2002) J Clim, 15, pp. 3394-3410
  • Flato, G.M., (2005) The Third Generation Coupled Global Climate Model (CGCM3) (and Included Links to the Description of The AGCM3 Atmospheric Model), , http://www.cccma.bc.ec.gc.ca/models/cgcm3.shtml
  • Gandu, A.W., Silva Dias, P.L., Impact of tropical heat sources on the South American tropospheric upper circulation and subsidence (1998) J Geophys Res, 103, pp. 6001-6015
  • Giorgi, F., Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations (2002) Clim Dyn, 18, pp. 675-691
  • Gordon, C., The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments (2000) Clim Dyn, 16, pp. 147-168
  • Gordon, H.B., The CSIRO Mk3 climate system model (2002) CSIRO Atmospheric Research Technical Paper No. 60. Commonwealth Scientific and Industrial Research Organisation Atmospheric Research, , http://www.cmar.csiro.au/e-print/open/gordon_2002a.pdf, Aspendale, Victoria, Australia
  • Grimm, A., Zilli, M.T., Interannual variability and seasonal evolution of summer monsoon in South America (2009) J Clim, 22, pp. 2257-2275
  • Grimm, A., Barros, V.R., Doyle, M.E., Climate variability in southern South America associated with El Niño and La Niña events (2000) J Clim, 13, pp. 35-58
  • Guilyardi, E., El Niño-mean state-seasonal cycle interactions in a multi-model ensemble (2006) Clim Dyn, 26 (4), pp. 329-348
  • Hasumi, H., K-1 coupled GCM (MIRCO) description (2004) K-1 Technical Report No. 1, p. 34. , http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/techrepo.pdf, Available at
  • Hawkins, E., Sutton, R.T., The potential to narrow uncertainty in regional climate predictions (2009) Bull Am Meteorol Soc, 90 (8), pp. 1095-1107. , ISSN 1520-0477
  • Summary for policymakers (2007) Climate Change 2007: The Physical Science Basis, , IPCC, In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
  • Johns, T.C., The new Hadley Centre climate model HadGEM1: evaluation of coupled simulations (2006) J Clim, 19, pp. 1327-1353
  • Jungclaus, J.H., Ocean circulation and tropical variability in the AOGCM ECHAM5/MPI-OM (2006) J Clim, 19, pp. 3952-3972
  • Knutti, R., The end of model democracy? An editorial comment (2010) Clim Chang, 102, pp. 395-404
  • Kodama, Y.-M., Large-scale common features of subtropical precipitation zones (the Baiu Frontal Zone, the SPCZ, and the SACZ). Part I: characteristics of subtropical frontal zones (1992) J Meteorol Soc Jpn, 70, pp. 813-835
  • Leloup, J., Lengaigne, M., Boulanger, J.P., Twentieth century ENSO characteristics in the IPCC database (2008) Clim Dyn, 30, pp. 277-291
  • Li, Z.X., Le Treut, H., Transient behavior of the meridional moisture transport across South America and its relation to atmospheric circulation patterns (1999) Geophys Res Lett, 26, pp. 1409-1412
  • Marti, O., (2005) The New IPSL Climate System Model: IPSL-CM4. Note Du Pôle De Modélisation No. 26, , http://dods.ipsl.jussieu.fr/omamce/IPSLCM4/DocIPSLCM4/FILES/DocIPSLCM4.pdf, Institut Pierre Simon Laplace des Sciences de l'Environnement Global, Paris
  • Marengo, J.A., Liebmann, B., Grimm, A.M., Misra, V., Silva Dias, P.L., Cavalcanti, I.F.A., Carvalho, L.M.V., Alves, L.M., (2010) Accepted In Int J Climatol, , Recent developments on the South American monsoon system
  • Meehl, G., Covey, C., Taylor, K.E., Delworth, T., Stouffer, R.J., Latif, M., McAvaney, B., Mitchell, J.F.B., THE WCRP CMIP3 multimodel dataset: a new era in climate change research (2007) Bull Am Meteorol Soc, 88, pp. 1383-1394
  • Min, S.-K., Legutke, S., Hense, A., Kwon, W.-T., Climatology and internal variability in a 1000-year control simulation with the coupled climate model ECHO-G-I. Near-surface temperature, precipitation and mean sea level pressure (2005) Tellus, 57 A, pp. 605-621
  • Nakicenovic, N., (2000) Special Report On Emissions Scenarios, , In: Nakicenovic N, Swart R (eds) Cambridge Univ Press, New York
  • Nogués-Paegle, J., Mo, K., Alternating wet and dry conditions over South America during summer (1997) Mon Weather Rev, 125, pp. 279-291
  • Paegle, J.N., Mo, K.C., Linkages between summer rainfall variability over South America and sea surface temperature anomalies (2002) J Clim, 15, pp. 1389-1407
  • Robertson, A.W., Mechoso, C.R., Interannual and interdecadal variability of the South Atlantic convergence zone (2000) Mon Weather Rev, 128, pp. 2947-2957
  • Rodwell, M.R., Hoskins, B.J., Subtropical anticyclones and summer monsoons (2001) J Clim, 14, pp. 3192-3211
  • Russell, G.L., (2005) 4×3 Atmosphere-ocean Model Documentation, , http://aom.giss.nasa.gov/doc4x3.html
  • Salas-Melia, D., Chauvin, F., Deque, M., Douville, H., Gueremy, J., Marquet, P., Planton, S., Tyteca, S., Description and validation of the CNRM-CM3 global coupled model (2005) CNRM Working Note 103
  • Schmidt, G.A., Present day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite and reanalysis data (2006) J Clim, 19, pp. 153-192. , http://www.giss.nasa.gov/tools/modelE/
  • Silvestri, G., Vera, C., Evaluation of the WCRP-CMIP3 model simulations in the La Plata Basin (2008) Meteorol Appl, 15, pp. 497-502
  • van Oldenborgh, G., Philip, S., Collins, M., El Niño in changing climate: a multi-model study (2005) Ocean Sci, 1, pp. 81-95
  • Vera, C., Silvestri, G., Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset (2009) Clim Dyn, 32, pp. 1003-1014
  • Vera, C.S., Toward a unified view of the American monsoon systems (2006) J Clim, 19, pp. 4977-5000. , WN: 0628807462003
  • Vera, C.S., Silvestri, G., Liebmann, B., Gonzalez, P., Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models (2006) Geophys Res Lett, 33, pp. L13707. , doi:10.1029/2006GL025759
  • Volodin, E.M., Diansky, N.A., El-Niño reproduction in a coupled general circulation model of atmosphere and ocean (2004) Russ Meteorol Hydrol, 12, pp. 5-14
  • Xie, P., Arkin, P.A., Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs (1997) Bull Am Meteorol Soc, 78, pp. 2539-2558
  • Yukimoto, S., Present-day climate and climate sensitivity in the Meteorological Research Institute Coupled GCM, Version 2.3 (MRI-CGCM2.3) (2006) J Meteorol Soc Jpn, 84, pp. 333-363

Citas:

---------- APA ----------
Junquas, C., Vera, C., Li, L. & Le Treut, H. (2012) . Summer precipitation variability over Southeastern South America in a global warming scenario. Climate Dynamics, 38(9-10), 1867-1883.
http://dx.doi.org/10.1007/s00382-011-1141-y
---------- CHICAGO ----------
Junquas, C., Vera, C., Li, L., Le Treut, H. "Summer precipitation variability over Southeastern South America in a global warming scenario" . Climate Dynamics 38, no. 9-10 (2012) : 1867-1883.
http://dx.doi.org/10.1007/s00382-011-1141-y
---------- MLA ----------
Junquas, C., Vera, C., Li, L., Le Treut, H. "Summer precipitation variability over Southeastern South America in a global warming scenario" . Climate Dynamics, vol. 38, no. 9-10, 2012, pp. 1867-1883.
http://dx.doi.org/10.1007/s00382-011-1141-y
---------- VANCOUVER ----------
Junquas, C., Vera, C., Li, L., Le Treut, H. Summer precipitation variability over Southeastern South America in a global warming scenario. Clim. Dyn. 2012;38(9-10):1867-1883.
http://dx.doi.org/10.1007/s00382-011-1141-y