Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present an analysis of a regional simulation of present-day climate (1981-1990) over southern South America. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. We evaluate the capability of the model in simulating the observed climate with emphasis on low-level circulation patterns and surface variables, such as precipitation and surface air mean, maximum and minimum temperatures. The regional model performance was evaluated in terms of seasonal means, seasonal cycles, interannual variability and extreme events. Overall, the regional model is able to capture the main features of the observed mean surface climate over South America, its seasonal evolution and the regional detail due to topographic forcing. The observed regional patterns of surface air temperatures (mean, maxima and minima) are well reproduced. Biases are mostly within 3°C, temperature being overestimated over central Argentina and underestimated in mountainous regions during all seasons. Biases in northeastern Argentina and southeastern Brazil are positive during austral spring season and negative in other seasons. In general, maximum temperatures are better represented than minimum temperatures. Warm bias is larger during austral summer for maximum temperature and during austral winter for minimum temperature, mainly over central Argentina. The broad spatial pattern of precipitation and its seasonal evolution are well captured; however, the regional model overestimates the precipitation over the Andes region in all seasons and in southern Brazil during summer. Precipitation amounts are underestimated over the La Plata basin from fall to spring. Extremes of precipitation are better reproduced by the regional model compared with the driving model. Interannual variability is well reproduced too, but strongly regulated by boundary conditions, particularly during summer months. Overall, taking into account the quality of the simulation, we can conclude that the regional model is capable in reproducing the main regional patterns and seasonal cycle of surface variables. The present reference simulation constitutes the basis to examine the climate change simulations resulting from the A2 and B2 forcing scenarios which are being reported in a separate study. © Springer-Verlag 2007.

Registro:

Documento: Artículo
Título:Regional climate change experiments over southern South America. I: Present climate
Autor:Solman, S.A.; Nuñez, M.N.; Cabré, M.F.
Filiación:Centro de Investigaciones del Mar y la Atmósfera (CIMA-CONICET/UBA), Dto. Cs. de la Atmósfera y los Océanos (UBA) Ciudad Universitaria, Pabellón II 2piso, Buenos Aires 1428, Argentina
Palabras clave:Present climate; Regional climate modelling; Southern South America; air temperature; annual variation; boundary condition; climate change; climate modeling; computer simulation; experimental study; performance assessment; precipitation assessment; regional climate; summer; topographic effect; Argentina; Brazil; South America
Año:2008
Volumen:30
Número:5
Página de inicio:533
Página de fin:552
DOI: http://dx.doi.org/10.1007/s00382-007-0304-3
Título revista:Climate Dynamics
Título revista abreviado:Clim. Dyn.
ISSN:09307575
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09307575_v30_n5_p533_Solman

Referencias:

  • Caya, D., Biner, S., Internal variability of RCM simulations over an annual cycle (2004) Clim Dyn, 22, pp. 33-46
  • Chen, F., Dudhia, J., Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity (2001) Mon Wea Rev, 129, pp. 569-585
  • Christensen, O.B., Relaxation of soil variables in a regional climate model (1999) Tellus, 51 A, pp. 674-685
  • Dickinson, R., Errico, R., Giorgi, F., Bates, G., A regional climate model for the western united states (1989) Clim Change, 15, pp. 383-422
  • Figueroa, S., Satyamurti, P., Silva Dias, P.L., Simulation of the summer circulation over the South American region with an eta coordinate model (1995) J Atmos Sci, 52, pp. 1573-1584
  • Frei, C., Christensen, J.H., Deque, M., Jacob, D., Jones, R.G., Vidale, P.L., Daily precipitation statistics in regional climate models: Evalution and intercomparison for the European Alps (2003) J Geophys Res, 108 (D3), p. 4124
  • Garand, L., Some improvements and complements to the infrared emissivity algorithm including a parameterization of the absorption in the continuum region (1983) J Atmos Sci, 40, pp. 230-244
  • Giorgi, F., On the simulation of regional climate using a limited area model nested in a general circulation model (1990) J Climate, 3, pp. 941-963
  • Giorgi, F., Dependence of surface climate interannual variability on spatial scale (2002) Gephys Res Lett, 29, p. 2101. , doi: 10.1029/2002GL016175
  • Giorgi, F., Bi, X., Pal, J., Mean, interannual variability and trends in a regional climate change experiment over Europe I. Present-day climate (1961-1990) (2004) Clim Dyn, 22, pp. 733-756
  • Grell, G.A., Dudhia, J., Stauffer, D.R., A description of the fifth-generation Penn System/NCAR Mesoscale Model (MM5) (1993), p. 107. , NCAR Tech Note NCAR/TN-398+1A; Hong, S., Pan, H., Non-local boundary layer vertical diffusion in a Medium-Range Forecast model (1996) Mon Wea Rev, 124, pp. 2322-2339
  • Hsie, E.Y., Anthes, R.A., Keyser, D., Numerical simulation of frontogenesis in a moist atmosphere (1984) J Atmos Sci, 41, pp. 2581-2594
  • (2000) Emission Scenarios, a Special Report of Working Group III of the Intergovernmental on Climate Change, p. 599. , IPCC In: Nakicenovic N (Coordinating Lead Author). Cambridge University Press, Cambridge
  • Kain, J., Fritsch, J., Convective parameterization for mesoscale models: The Kain-Fritsch scheme (1993) The Representation of Cumulus Convection in Numerical Models, pp. 165-170. , In: Emanuell KA, Raymond DJ (eds) Amer Meteor Soc, Boston
  • Kalnay, E., The NCEP/NCAR 40-year reanalysis Project (1996) Bull Am Meteorol Soc, 77, pp. 437-471
  • Lenters, J.L., Cook, K.H., Simulation and diagnosis of the regional South American precipitation climatology (1995) J Climate, 8, pp. 2988-3005
  • Leung, L.R., Qian, Y., Bian, X., Hydroclimate of the western United States based on observations and regional climate simulation of 1981-2000. Part I: Seasonal statistics (2003) J Climate, 16, pp. 1892-1911
  • Liang, X.Z., Li, L., Kunkel, K., Regional climate model simulation of US precipitation during 1982-2002. Part I: Annual cycle (2004) J Climate, 17, pp. 3510-3528
  • Liebmann, B., Allured, D., Daily precipitation grids for South America (2005) Bull Am Meteor Soc, 86, pp. 1567-1570
  • Menéndez, C.G., Cabré, M.F., Solman, S.A., Nuñez, M.N., Regional climate simulation over southern South America using MM5 (2003) 7th International Conference on Southern Hemisphere Meteorology and Oceanography, pp. 59-61. , In: Am Met Soc, Wellington, New Zealand
  • Menéndez, C.G., Cabré, M.F., Nuñez, M.N., Interannual and diurnal variability of January precipitation over subtropical South America simulated by regional climate model (2004) Clivar Exchanges, 29, pp. 1-3
  • Misra, V., Dirmeyer, P.A., Kirtman, B.P., Juang, H.M., Kanamitsu, M., Regional simulation of interannual variability over South America (2002) J Geophys Res, 107 (D20). , doi: 10.1029/2001JD900216
  • Misra, V., Dirmeyer, P.A., Kirtman, B.P., Dynamic downscalling of seasonal simulations over South America (2003) J Climate, 16, pp. 103-117
  • Moberg, A., Jones, P., Regional climate model simulations of daily maximum and minimum near-surface temperatures across Europe compared with observed station data 1961-1990 (2004) Clim Dyn, 23, pp. 695-715
  • New, M.G., Hulme, M., Jones, P.D., Representing twentieth-century space time climate variability. Part I. Development of a 1961-1990 mean monthly terrestrial climatology (1999) J Climate, 12, pp. 829-856
  • New, M.G., Hulme, M., Jones, P.D., Representing twentieth-century space time climate variability. Part I. Development of a 1901-1996 mean monthly terrestrial climatology (2000) J Climate, 13, pp. 2217-2238
  • Nicolini, M., Salio, P., Katzfey, J., McGregor, J.L., Saulo, A.C., January and July regional climate simulation over South America (2002) J Geophys Res, 107 (D20). , doi: 10.1029/2001JD000736
  • Pal, J., Eltahir, E., Pathways relating soil moisture conditions to future summer rainfall within a model of the land-atmosphere system (2001) J Climate, 14, pp. 1227-1242
  • Pope, V., Gallani, M., Rowntree, P., Stratton, R., The impact of new physical parameterizations in the Hadley Centre Climate model (2000) Clim Dyn, 16, pp. 123-146
  • Rǎisǎnen, J., Hansson, U., Ullerstig, A., Döscher, R., Graham, L.P., Jones, C., Meier, H.E., Willén, U., European climate in the late twenty-first century: Regional simulations with two driving global models and two forcing scenarios (2004) Clim Dyn, 22, pp. 13-31
  • Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., Kaplan, A., Global analyses of SST, sea ice, and night marine air temperature since the late nineteenth century (2003) J Geophys Res, 108, p. 4407. , doi: 10.1029/2002JD002670
  • Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., Wang, W., An improved in situ and satellite SST analysis for climate (2002) J Climate, 15, pp. 1609-1625
  • Rojas, M., Seth, A., Simulation and sensitivity in a nested modeling system for South America. Part II: GCM boundary forcing (2003) J Climate, 16, pp. 2454-2471
  • Saulo, A.C., Nicolini, M., Chou, S.C., Model characterization of the South American low-level flow during the 1997-1998 spring-summer season (2000) Clim Dyn, 16, pp. 867-881
  • Seth, A., Rojas, M., Simulation and sensitivity in a nested modeling system for South America. Part I. Reanalysis boundary forcing (2003) J Climate, 16, pp. 2437-2453
  • Stephens, G.L., Radiation profiles in extended water clouds: II. Parameterization schemes (1978) J Atmos Sci, 35, pp. 2123-2132
  • Stephens, G.L., The parameterization of radiation for numerical weather prediction and climate models (1984) Mon Wea Rev, 112, pp. 826-867
  • Tadross, M., Gutowski, W., Hewitson, W., Jack, C., New, M., Southern African interannual and diurnal climate variability in the MM5 regional climate model (2006) Theor Appl Climatol, 86, pp. 63-80
  • Wang, M., Paegle, J., Impact of analysis uncertainty upon regional atmospheric moisture flux (1996) J Geophys Res, 101 (D3), pp. 7291-7303
  • Xu, H., Wang, Y., Xie, S.P., Effects of the Andes on Eastern Pacific Climate: A regional atmospheric model study (2004) J Climate, 17, pp. 589-602

Citas:

---------- APA ----------
Solman, S.A., Nuñez, M.N. & Cabré, M.F. (2008) . Regional climate change experiments over southern South America. I: Present climate. Climate Dynamics, 30(5), 533-552.
http://dx.doi.org/10.1007/s00382-007-0304-3
---------- CHICAGO ----------
Solman, S.A., Nuñez, M.N., Cabré, M.F. "Regional climate change experiments over southern South America. I: Present climate" . Climate Dynamics 30, no. 5 (2008) : 533-552.
http://dx.doi.org/10.1007/s00382-007-0304-3
---------- MLA ----------
Solman, S.A., Nuñez, M.N., Cabré, M.F. "Regional climate change experiments over southern South America. I: Present climate" . Climate Dynamics, vol. 30, no. 5, 2008, pp. 533-552.
http://dx.doi.org/10.1007/s00382-007-0304-3
---------- VANCOUVER ----------
Solman, S.A., Nuñez, M.N., Cabré, M.F. Regional climate change experiments over southern South America. I: Present climate. Clim. Dyn. 2008;30(5):533-552.
http://dx.doi.org/10.1007/s00382-007-0304-3