Artículo

Richmond, V.; Michelini, F.M.; Bueno, C.A.; Alché, L.E.; Ramírez, J.A. "Small molecules as anti-TNF drugs" (2015) Current Medicinal Chemistry. 22(25):2920-2942
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tumor necrosis factor (TNF, TNF-α, cachectin) is a pleiotropic, proinflammatory cytokine with multiple biological effects, many of which are not yet fully understood. Although TNF was initially described as an anti-tumor agent more than three decades ago, current knowledge places it central to immune system homeostasis. TNF plays a critical role in host defense against infection, as well as an inhibitory role in autoimmune disease. However, TNF overproduction generates deleterious effects by inducing the transcription of genes involved in acute and chronic inflammatory responses including asthma, rheumatoid arthritis, Crohńs disease, and psoriasis. Direct inhibition of TNF by biologics, such as monoclonal antibodies and circulating TNF receptor constructs, has produced effective treatments for these disorders and validated the inhibition of this proinflammatory cytokine as an effective therapy. Unfortunately, these biological therapies suffer from several drawbacks, including high cost and the induction of autoantibody production. Thus, the development of small molecules able to modulate TNF production or signaling pathways remains a central challenge in Medicinal Chemistry. Considerable efforts have been made over the past two decades to develop such inhibitors, which could potentially be administered orally and would presumably be cheaper. This review is focused on the recent development of compounds that modulate the activity of this cytokine by acting at different levels, such as TNF expression, processing, binding to its receptors and direct inhibition. These approaches will be compared and discussed. © 2015 Bentham Science Publishers.

Registro:

Documento: Artículo
Título:Small molecules as anti-TNF drugs
Autor:Richmond, V.; Michelini, F.M.; Bueno, C.A.; Alché, L.E.; Ramírez, J.A.
Filiación:Departamento de Química Orgánica, UMYMFOR, CONICET - Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Biológica and IQUIBICEN (CONICET - Facultad de Ciencias Exactas Y Naturales), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Cytokines; Inflammation; Protein-protein interactions; TNF; TNF inhibitors; TNF-TNFR interaction; adalimumab; certolizumab pegol; etanercept; golimumab; infliximab; proteinase; tumor necrosis factor; tumor necrosis factor inhibitor; tumor necrosis factor receptor; proteinase inhibitor; tumor necrosis factor alpha; tumor necrosis factor receptor; antiinflammatory activity; Article; cytokine production; enzyme inhibition; human; hydrogen bond; IC50; in vitro study; intracellular signaling; nonhuman; protein expression; protein function; protein protein interaction; animal; antagonists and inhibitors; metabolism; signal transduction; Animals; Humans; Protease Inhibitors; Receptors, Tumor Necrosis Factor; Signal Transduction; Tumor Necrosis Factor-alpha
Año:2015
Volumen:22
Número:25
Página de inicio:2920
Página de fin:2942
DOI: http://dx.doi.org/10.2174/0929867322666150729115553
Título revista:Current Medicinal Chemistry
Título revista abreviado:Curr. Med. Chem.
ISSN:09298673
CODEN:CMCHE
CAS:adalimumab, 331731-18-1; certolizumab pegol, 428863-50-7; etanercept, 185243-69-0, 200013-86-1; golimumab, 476181-74-5; infliximab, 170277-31-3; proteinase, 9001-92-7; tumor necrosis factor receptor, 129203-93-6, 184595-01-5; proteinase inhibitor, 37205-61-1; Protease Inhibitors; Receptors, Tumor Necrosis Factor; Tumor Necrosis Factor-alpha
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09298673_v22_n25_p2920_Richmond

Referencias:

  • McCarthy, E.F., The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas (2006) Iowa Orthop. J., 26, pp. 154-158
  • Carswell, E.A., Old, L.J., Kassel, R.L., Green, S., Fiore, N., Williamson, B., An endotoxin-induced serum factor that causes necrosis of tumors (1975) Proc. Natl. Acad. Sci. USA, 72, pp. 3666-3670
  • Bahia, M.S., Silakari, O., Tumor necrosis factor alpha converting enzyme: An encouraging target for various inflammatory disorders (2010) Chem. Biol. Drug des, 75, pp. 415-443
  • Pennica, D., Nedwin, G.E., Hayflick, J.S., Seeburg, P.H., Derynck, R., Palladino, M.A., Kohr, W.J., Goeddel, D.V., Human tumour necrosis factor: Precursor structure, expression and homology to lymphotoxin (1984) Nature, 312, pp. 724-729
  • Wang, H., Czura, C., Chargaff, E., Tumor necrosis factor (2003) The Cytokine Handbook, 2, pp. 837-860. , Thomson, A.W. Lotze, M.T. Eds. Elsevier
  • Van Horssen, R., Ten Hagen, T.L.M., Eggermont, A.M.M., TNF-alpha in cancer treatment: Molecular insights, antitumor effects, and clinical utility (2006) Oncologist, 11, pp. 397-408
  • Black, R.A., Rauch, C.T., Kozlosky, C.J., Peschon, J.J., Slack, J.L., Wolfson, M.F., Castner, B.J., Cerretti, D., A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells (2007) Nature, 20, pp. 729-733
  • Hikita, A., Tanaka, N., Yamane, S., Ikeda, Y., Furukawa, H., Tohma, S., Suzuki, R., Fukui, N., Involvement of a disintegrin and metalloproteinase 10 and 17 in shedding of tumor necrosis factor-alpha (2009) Biochem. Cell Biol, 87, pp. 581-593
  • Haro, H., Crawford, H.C., Fingleton, B., Shinomiya, K., Spengler, D.M., Matrisian, L.M., Matrix metalloproteinase- 7 - dependent release of tumor necrosis factor-α in a model of herniated disc resorption (2000) J. Clin. Invest, 105, pp. 143-150
  • Becker-Pauly, C., Rose-John, S., TNFα cleavage beyond TACE/ADAM17: Matrix metalloproteinase 13 is a potential therapeutic target in sepsis and colitis (2013) EMBO Mol. Med, 5, pp. 902-904
  • Puimege, L., Libert, C., Hauwermeiren, F.V., Cytokine & growth factor reviews regulation and dysregulation of tumor necrosis factor receptor-1 (2014) Cytokine Growth Factor Rev, 25, pp. 285-300
  • Pimentel-Muinos, F.X., Seed, B., Regulated commitment of TNF receptor signaling: A molecular switch for death or activation (1999) Immunity, 11, pp. 783-793
  • Aggarwal, B., Signalling pathways of the TNF superfamily: A double-edged sword (2003) Nat. Rev. Immunol., 3, pp. 745-756
  • Locksley, R.M., Killeen, N., Lenardo, M.J., The TNF and TNF receptor superfamilies (2001) Cell, 104, pp. 487-501
  • Bodmer, J.-L., Schneider, P., Tschopp, J., The molecular architecture of the TNF superfamily (2002) Trends Biochem. Sci., 27, pp. 19-26
  • Chen, G., Goeddel, D.V., TNF-R1 signaling: A beautiful pathway (2002) Science, 296, pp. 1634-1635
  • Wajant, H., Pfizenmaier, K., Scheurich, P., Tumor necrosis factor signaling (2003) Cell Death Differ, pp. 45-65
  • Keller, M., Mazuch, J., Abraham, U., Eom, G.D., Herzog, E.D., Volk, H.-D., Kramer, A., Maier, B., A circadian clock in macrophages controls inflammatory immune responses (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 21407-21412
  • Van Linthout, S., Miteva, K., Tschope, C., Crosstalk between fibroblasts and inflammatory cells (2014) Cardiovasc. Res, 102, pp. 258-269
  • Cessak, G., Kuzawinska, O., Burda, A., Lis, K., Wojnar, M., Mirowska-Guzel, D., Bałkowiec-Iskra, E., TNF inhibitors - Mechanisms of action, approved and off-label indications (2014) Pharmacol. Rep., 66, pp. 836-844
  • Eck, M.J., Sprang, S.R., The structure of tumor necrosis factor-α at 2.6 A resolution. Implications for receptor binding (1989) J. Biol. Chem, 264, pp. 17595-17605
  • Palladino, M.A., Bahjat, F.R., Theodorakis, E.A., Moldawer, L.L., Anti-TNF-α therapies: The next generation (2003) Nat. Rev. Drug Discov, 2, pp. 736-746
  • Sfikakis, P.P., Tsokos, G.C., Towards the next generation of anti-TNF drugs (2011) Clin. Immunol, 141, pp. 231-235
  • Sfikakis, P.P., The first decade of biologic TNF antagonists in clinical practice: Lessons learned, unresolved issues and future directions (2010) Curr. Dir. Autoimmun, 11, pp. 180-210
  • Lin, J., Ziring, D., Desai, S., Kim, S., Wong, M., Korin, Y., Reed, E., Singh, R.R., TNFalpha blockade in human diseases: An overview of efficacy and safety (2009) Clin Immunol, 126, pp. 13-30
  • Listing, J., Strangfeld, A., Kary, S., Rau, R., Von Hinueber, U., Stoyanova-Scholz, M., Gromnica-Ihle, E., Zink, A., Infections in patients with rheumatoid arthritis treated with biologic agents (2005) Arthritis Rheum, 52, pp. 3403-3412
  • Schon, A., Lam, S.Y., Freire, E., Thermodynamics-based drug design: Strategies for inhibiting protein-protein interactions (2011) Future Med. Chem, 3, pp. 1129-1137
  • Arkin, M.R., Wells, J.A., Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream (2004) Nat. Rev. Drug Discov, 3, pp. 301-317
  • Murumkar, P.R., Giridhar, R., Yadav, M.R., Novel methods and strategies in the discovery of TACE inhibitors (2013) Expert Opin. Drug Discov, 8, pp. 157-181
  • Sipos, W., Pietschmann, P., Rauner, M., Strategies for novel therapeutic approaches targeting cytokines and signaling pathways of osteoclasto- And osteoblastogenesis in the fight against immune-mediated bone and joint diseases (2008) Curr. Med. Chem, 15, pp. 127-136
  • Debnath, T., Kim, D., Lim, B., Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease (2013) Molecules, 18, pp. 7253-7270
  • Venkatesha, S., Dudics, S., Acharya, B., Moudgil, K., Cytokine-modulating strategies and newer cytokine targets for arthritis therapy (2014) Int. J. Mol. Sci, 16, pp. 887-906
  • Bhandari, P., Patel, N.K., Gangwal, R.P., Sangamwar, A.T., Bhutani, K.K., Oleanolic acid analogs as NO, TNF-α and IL-1β inhibitors: Synthesis, biological evaluation and docking studies (2014) Bioorg. Med. Chem. Lett., 24, pp. 4114-4119
  • Bhandari, P., Patel, N.K., Bhutani, K.K., Synthesis of new heterocyclic lupeol derivatives as nitric oxide and proinflammatory cytokine inhibitors (2014) Bioorg. Med. Chem. Lett., 24, pp. 3596-3599
  • Campana, P.R.V., Coleman, C.M., Teixeira, M.M., Ferreira, D., Braga, F.C., TNF-α inhibition elicited by mansoins A and B, heterotrimeric flavonoids isolated from mansoa hirsuta (2014) J. Nat. Prod, 77, pp. 824-830
  • Chaulet, C., Croix, C., Alagille, D., Normand, S., Delwail, A., Favot, L., Lecron, J.-C., Viaud-Massuard, M.-C., Design, synthesis and biological evaluation of new thalidomide analogues as TNF-α and IL-6 production inhibitors (2011) Bioorg. Med. Chem. Lett, 21, pp. 1019-1022
  • Choi, S., Nguyen, V.T., Tae, N., Lee, S., Ryoo, S., Min B.-., S., Lee, J.H., Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells (2014) Toxicol. Appl. Pharmacol, 280, pp. 434-442
  • Dhuru, S., Bhedi, D., Gophane, D., Hirbhagat, K., Nadar, V., More, D., Parikh, S., Sivaramakrishnan, H., Novel diarylheptanoids as inhibitors of TNF-α production (2011) Bioorg. Med. Chem. Lett., 21, pp. 3784-3787
  • Guirado, A., Lopez Sanchez, J.I., Ruiz-Alcaraz, A.J., Bautista, D., Galvez, J., Synthesis and biological evaluation of 4-alkoxy-6, 9-dichloro [1, 2, 4] triazolo [4, 3-a]quinoxalines as inhibitors of TNF-α and IL-6 (2012) Eur. J. Med. Chem, 54, pp. 87-94
  • Guirado, A., Lopez Sanchez, J.I., Ruiz-Alcaraz, A.J., Garcia-Penarrubia, P., Bautista, D., Galvez, J., First synthesis and biological evaluation of 4-amino-2-aryl-6, 9- dichlorobenzo [g] pteridines as inhibitors of TNF-α and IL-6 (2013) Eur. J. Med. Chem, 66, pp. 269-275
  • Liu, Q., Shu, X., Wang, L., Sun, A., Liu, J., Cao, X., Albaconol, a plant-derived small molecule, inhibits macrophage function by suppressing NF-kappaB activation and enhancing SOCS1 expression (2008) Cell. Mol. Immunol., 5, pp. 271-278
  • Kim, J.I., Lee, H.Y., Park, K.S., Lee, T., Ryu, S.H., Bae, Y.-S., A small compound that inhibits lipopolysaccharideinduced tumor necrosis factor-alpha production (2006) Biochem. Biophys. Res. Commun., 347, pp. 797-802
  • Luo, W., Yu, Q., Salcedo, I., Holloway, H.W., Lahiri, D.K., Brossi, A., Tweedie, D., Greig, N.H., Design, synthesis and biological assessment of novel N-substituted 3- (phthalimidin-2-yl)-2, 6-dioxopiperidines and 3-substituted 2, 6-dioxopiperidines for TNF-α inhibitory activity (2011) Bioorg. Med. Chem, 19, pp. 3965-3972
  • Ottosen, E.R., Sorensen, M.D., Bjorkling, F., Skak-Nielsen, T., Fjording, M.S., Aaes, H., Binderup, L., Synthesis and structure-activity relationship of aminobenzophenones. A novel class of p38 MAP kinase inhibitors with high antiinflammatory activity (2003) J. Med. Chem, 46, pp. 5651-5662
  • Vančo, J., Galikova, J., Hošek, J., Dvorak, Z., Parakova, L., Travniček, Z., Gold(I) Complexes of 9-Deazahypoxanthine as Selective Antitumor and Anti-Inflammatory Agents (2014) PLoS One, 9, p. e109901
  • Shah, M.R., Arfan, M., Amin, H., Hussain, Z., Qadir, M.I., Choudhary, M.I., VanDerveer, D., Khan, I.U., Synthesis of new bergenin derivatives as potent inhibitors of inflammatory mediators NO and TNF-α (2012) Bioorg. Med. Chem. Lett, 22, pp. 2744-2747
  • Gaggeri, R., Rossi, D., Christodoulou, M.S., Passarella, D., Leoni, F., Azzolina, O., Collina, S., Chiral flavanones from Amygdalus lycioides spach: Structural elucidation and identification of TNFalpha inhibitors by bioactivity-guided fractionation (2012) Molecules, 17, pp. 1665-1674
  • Aggarwal, B.B., Gupta, S.C., Sung, B., Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers (2013) Br. J. Pharmacol, 169, pp. 1672-1692
  • Meng, Z., Yan, C., Deng, Q., Gao, D., Niu, X., Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways (2013) Acta Pharmacol. Sin., 34, pp. 901-911
  • Tunon, M.J., Garcia-Mediavilla, M.V., Sanchez-Campos, S., Gonzalez-Gallego, J., Potential of flavonoids as antiinflammatory agents: Modulation of pro-inflammatory gene expression and signal transduction pathways (2009) Curr. Drug Metab, 10, pp. 256-271
  • Balasubramanyam, K., Varier, R.A., Altaf, M., Swaminathan, V., Siddappa, N.B., Ranga, U., Kundu, T.K., Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferasedependent chromatin transcription (2004) J. Biol. Chem, 279, pp. 51163-51171
  • Singh, S., Aggarwal, B.B., Activation of transcription factor NF-kB is suppressed by curcumin (diferuloylmethane) (1995) J. Biol. Chem, 270, pp. 24995-25000
  • Reuter, S., Gupta, S.C., Park, B., Goel, A., Aggarwal, B.B., Epigenetic changes induced by curcumin and other natural compounds (2011) Genes Nutr, 6, pp. 93-108
  • Tu, C., Han, B., Yao, Q., Zhang, Y., Liu, H., Zhang, S., Curcumin attenuates Concanavalin A-induced liver injury in mice by inhibition of Toll-like receptor (TLR) 2, TLR4 and TLR9 expression (2012) Int. Immunopharmacol, 12, pp. 151-157
  • Kumar, A., Dhawan, S., Hardegen, N.J., Aggarwal, B.B., Curcumin (Diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-kappaB activation (1998) Biochem. Pharmacol., 55, pp. 775-783
  • Zhou, T., Hou, J., Wang, M., Ma, L., Wu, L., Wang, S., Sun, B., Yao, Z., Regio-controlled synthesis of unsymmetrical pyrazine-fused sinomenine derivatives and discriminate substitution effects on TNF-α inhibitory activity (2014) Tetrahedron, 70, pp. 5475-5482
  • Upadhyay, K., Bavishi, A., Thakrar, S., Radadiya, A., Vala, H., Parekh, S., Bhavsar, D., Shah, A., Synthesis and biological evaluation of 4-styrylcoumarin derivatives as inhibitors of TNF-α and IL-6 with anti-tubercular activity (2011) Bioorg. Med. Chem. Lett., 21, pp. 2547-2549
  • Ramirez, J.A., Bruttomesso, A.C., Michelini, F.M., Acebedo, S.L., Alche, L.E., Galagovsky, L.R., Syntheses of immunomodulating androstanes and stigmastanes: Comparison of their TNF-α inhibitory activity (2007) Bioorganic Med. Chem, 15, pp. 7538-7544
  • Michelini, F.M., Berra, A., Alche, L.E., The in vitro immunomodulatory activity of a synthetic brassinosteroid analogue would account for the improvement of herpetic stromal keratitis in mice (2008) J. Steroid Biochem. Mol. Biol., 108, pp. 164-170
  • Michelini, F.M., Zorrilla, P., Robello, C., Alche, L.E., Immunomodulatory activity of an anti-HSV-1 synthetic stigmastane analog (2013) Bioorganic Med. Chem, 21, pp. 560-568
  • Spilker, B., FritzSimmons, S., Horan, M., US drug and biologic approvals in 1998 (1999) Drug Dev. Res, 48, pp. 139-153
  • Tseng, S., Pak, G., Washenik, K., Pomeranz, M.K., Shupack, J.L., Rediscovering thalidomide: A review of its mechanism of action, side effects, and potential uses (1996) J. Am. Acad. Dermatol, 35, pp. 969-979
  • Moreira, A.L., Sampaio, E.P., Zmuidzinas, A., Frindt, P., Smith, K.A., Kaplan, G., Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation (1993) J. Exp. Med, 177, pp. 1675-1680
  • Sampaio, E.P., Sarno, E.N., Galilly, R., Cohn, Z.A., Kaplan, G., Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes (1991) J. Exp. Med., 173, pp. 699-703
  • Revesz, L., Blum, E., Di Padova, F.E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Rucklin, G., SAR of benzoylpyridines and benzophenones as p38alpha MAP kinase inhibitors with oral activity (2004) Bioorg. Med. Chem. Lett., 14, pp. 3601-3605
  • Gururaja, T.L., Yung, S., Ding, R., Huang, J., Zhou, X., McLaughlin, J., Daniel-Issakani, S., Kinoshita, T., A class of small molecules that inhibit TNF alpha-induced survival and death pathways via prevention of interactions between TNFalphaRI, TRADD, and RIP1 (2007) Chem. Biol, 14, pp. 1105-1118
  • King, M.D., Alleyne, C.H., Dhandapani, K.M., TNF-alpha receptor antagonist, R-7050, improves neurological outcomes following intracerebral hemorrhage in mice (2013) Neurosci. Lett, 542, pp. 92-96
  • Aeluri, M., Chamakuri, S., Dasari, B., Guduru, S.K.R., Jimmidi, R., Jogula, S., Arya, P., Small molecule modulators of protein-protein interactions: Selected case studies (2014) Chem. Rev., 114, pp. 4640-4694
  • Milroy, L.-G., Grossmann, T.N., Hennig, S., Brunsveld, L., Ottmann, C., Modulators of protein-protein interactions (2014) Chem. Rev., 114, pp. 4695-4748
  • London, N., Raveh, B., Schueler-Furman, O., Druggable protein-protein interactions-from hot spots to hot segments (2013) Curr. Opin. Chem. Biol, 17, pp. 952-959
  • Sheinerman, F.B., Honig, B., On the role of electrostatic interactions in the design of protein-protein interfaces (2002) J. Mol. Biol, 318, pp. 161-177
  • Levy, E.D., A simple definition of structural regions in proteins and its use in analyzing interface evolution (2010) J. Mol. Biol, 403, pp. 660-670
  • Grazioli, L., Alzani, R., Ciomei, M., Mariani, M., Restivo, A., Cozzi, E., Marcucci, F., Inhibitory effect of suramin on receptor binding and cytotoxic activity of tumor necrosis factor alpha (1992) Int. J. Immunopharmacol, 14, pp. 637-642
  • Alzani, R., Corti, A., Grazioli, L., Cozzi, E., Ghezzi, P., Marcucci, F., Suramin induces deoligomerization of human tumor necrosis factor alpha (1993) J. Biol. Chem, 268, pp. 12526-12529
  • Mancini, F., Toro, C.M., Mabilia, M., Giannangeli, M., Pinza, M., Milanese, C., Inhibition of tumor necrosis factoralpha (TNF-alpha)/TNF-alpha receptor binding by structural analogues of suramin (1999) Biochem. Pharmacol, 58, pp. 851-859
  • He, M.M., Smith, A.S., Oslob, J.D., Flanagan, W.M., Braisted, A.C., Whitty, A., Cancilla, M.T., Cunningham, B.C., Small-molecule inhibition of TNF-alpha (2005) Science, 310, pp. 1022-1025
  • Keerthy, H.K., Mohan, C.D., Siveen, K.S., Fuchs, J.E., Rangappa, S., Sundaram, M.S., Li, F., Rangappa, K.S., Novel synthetic biscoumarins target tumor necrosis factor- in hepatocellular carcinoma in vitro and in vivo (2014) J. Biol. Chem., 289, pp. 31879-31890
  • Chan, D.S., Lee, H.M., Yang, F., Che, C.M., Wong, C.C., Abagyan, R., Leung, C.H., Ma, D.L., Structure-based discovery of natural-product-like TNF-α inhibitors (2010) Angew. Chem. Int. Ed. Engl., 49, pp. 2860-2864
  • Choi, H., Lee, Y., Park, H., Oh, D.-S., Discovery of the inhibitors of tumor necrosis factor alpha with structurebased virtual screening (2010) Bioorg. Med. Chem. Lett, 20, pp. 6195-6198
  • Leung, C.H., Chan, D.S.H., Kwan, M.H.T., Cheng, Z., Wong, C.Y., Zhu, G.Y., Fong, W.F., Ma, D.L., Structurebased repurposing of FDA-approved drugs as TNF-α inhibitors (2011) Chem. Med. Chem., 6, pp. 765-768
  • Abrams, P., Andersson, K.-E., Muscarinic receptor antagonists for overactive bladder (2007) BJU Int, 100, pp. 987-1006
  • Bays, H.E., Ose, L., Fraser, N., Tribble, D.L., Quinto, K., Reyes, R., Johnson-Levonas, A.O., Donahue, S.R., A multicenter, randomized, double-blind, placebocontrolled, factorial design study to evaluate the lipidaltering efficacy and safety profile of the ezetimibe/simvastatin tablet compared with ezetimibe and simvastatin monotherapy in patients with primary hypercholesterolemia (2004) Clin. Ther., 26, pp. 1758-1773
  • Shen, Q., Chen, J., Wang, Q., Deng, X., Liu, Y., Lai, L., Discovery of highly potent TNFα inhibitors using virtual screen (2014) Eur. J. Med. Chem, 85, pp. 119-126
  • Leung, C.H., Zhong, H.J., Yang, H., Cheng, Z., Chan, D.S.H., Ma, V.P.Y., Abagyan, R., Ma, D.L., A metal-based inhibitor of tumor necrosis factor-α (2012) Angew. Chem. Int. Ed. Engl., 51, pp. 9010-9014
  • Haider, S., Alam, M.S., Hamid, H., Shafi, S., Nargotra, A., Mahajan, P., Nazreen, S., Panda, A.K., Synthesis of novel 1, 2, 3-triazole based benzoxazolinones: Their TNF-α based molecular docking with in-vivo anti-inflammatory, antinociceptive activities and ulcerogenic risk evaluation (2013) Eur. J. Med. Chem., 70, pp. 579-588
  • Kumar, K.S., Kumar, P.M., Kumar, K.A., Sreenivasulu, M., Jafar, A.A., Rambabu, D., Krishna, G.R., Pal, M., A new three-component reaction: Green synthesis of novel isoindolo [2, 1-a]quinazoline derivatives as potent inhibitors of TNF-α (2011) Chem. Commun. (Camb)., 47, pp. 5010-5012
  • Kim, Y., Hong, Y.D., Joo, Y.H., Woo, B.Y., Kim, S.-Y., Koh, H.J., Park, M., Shin, S.S., Synthesis and structure-activity relationship of cyclopentenone oximes as novel inhibitors of the production of tumor necrosis factor- α (2014) Bioorg Med. Chem. Lett., 24, pp. 2-5
  • Semmler, J., Wachtel, H., Endres, S., The specific type IV phosphodiesterase inhibitor rolipram suppresses tumor necrosis factor-alpha production by human mononuclear cells (1993) Int. J. Immunopharmacol., 15, pp. 409-413
  • Lian, W., Upadhyaya, P., Rhodes, C.A., Liu, Y., Pei, D., Screening bicyclic peptide libraries for protein-protein interaction inhibitors: Discovery of a tumor necrosis factor-α Antagonist (2013) J. Am. Chem. Soc., 135, pp. 11990-11995
  • Hu, Z., Qin, J., Zhang, H., Wang, D., Hua, Y., Ding, J., Shan, L., Zhang, W., Japonicone A antagonizes the activity of TNF-α by directly targeting this cytokine and selectively disrupting its interaction with TNF receptor-1 (2012) Biochem. Pharmacol, 84, pp. 1482-1491
  • Ma, L., Gong, H., Zhu, H., Ji, Q., Su, P., Liu, P., Cao, S., Xu, Y., A novel small-molecule tumor necrosis factor α inhibitor attenuates inflammation in a hepatitis mouse model (2014) J. Biol. Chem, 289, pp. 12457-12466
  • Saito, H., Kojima, T., Takahashi, M., Horne, W.C., Baron, R., Amagasa, T., Ohya, K., Aoki, K., A tumor necrosis factor receptor loop peptide mimic inhibits bone destruction to the same extent as anti-tumor necrosis factor monoclonal antibody in murine collagen-induced arthritis (2007) Arthritis Rheum., 56, pp. 1164-1174
  • Bongartz, T., Sutton, A.J., Sweeting, M.J., Buchan, I., Matteson, E.L., Montori, V., Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials (2006) JAMA, 295, pp. 2275-2285
  • Gardam, M.A., Keystone, E.C., Menzies, R., Manners, S., Skamene, E., Long, R., Vinh, D.C., Anti-tumour necrosis factor agents and tuberculosis risk: Mechanisms of action and clinical management (2003) Lancet Infect. Dis., 3, pp. 148-155
  • Bluml, S., Scheinecker, C., Smolen, J.S., Redlich, K., Targeting TNF receptors in rheumatoid arthritis (2012) Int. Immunol., 24, pp. 275-281
  • Zettlitz, K.A., Lorenz, V., Landauer, K., Munkel, S., Herrmann, A., Scheurich, P., Pfizenmaier, K., Kontermann, R.E., ATROSAB, a humanized antagonistic anti-tumor necrosis factor receptor one-specific antibody (2010) MAbs, 2, pp. 639-647
  • Shibata, H., Yoshioka, Y., Abe, Y., Ohkawa, A., Nomura, T., Minowa, K., Mukai, Y., Tsutsumi, Y., The treatment of established murine collagen-induced arthritis with a TNFR1-selective antagonistic mutant TNF (2009) Biomaterials, 30, pp. 6638-6647
  • Arntz, O.J., Geurts, J., Veenbergen, S., Bennink, M.B., Van Den Brand, B.T., Abdollahi-Roodsaz, S., Van Den Berg, W.B., Van De Loo, F.A., A crucial role for tumor necrosis factor receptor 1 in synovial lining cells and the reticuloendothelial system in mediating experimental arthritis (2010) Arthritis Res. Ther., 12, p. R61
  • Huang, X.W., Yang, J., Dragovic, A.F., Zhang, H., Lawrence, T.S., Zhang, M., Antisense oligonucleotide inhibition of tumor necrosis factor receptor 1 protects the liver from radiation-induced apoptosis (2006) Clin. Cancer Res., 12, pp. 2849-2855
  • Van Hauwermeiren, F., Vandenbroucke, R.E., Libert, C., Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1 (2011) Cytokine Growth Factor Rev., 22, pp. 311-319
  • Murali, R., Cheng, X., Berezov, A., Du, X., Schon, A., Freire, E., Xu, X., Greene, M.I., Disabling TNF receptor signaling by induced conformational perturbation of tryptophan-107 (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 10970-10975
  • He, M.M., Smith, A.S., Oslob, J.D., Flanagan, W.M., Braisted, A.C., Whitty, A., Cancilla, M.T., Cunningham, B.C., Small-molecule inhibition of TNF-alpha (2005) Science, 310, pp. 1022-1025
  • Carter, P.H., Scherle, P.A., Muckelbauer, J.K., Voss, M.E., Liu, R.Q., Thompson, L.A., Tebben, A.J., Muckelbauer, J.A., Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 11879-11884
  • Probert, L., TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects (2015) Neuroscience, (15), pp. 00579-00585. , S0306-S4522

Citas:

---------- APA ----------
Richmond, V., Michelini, F.M., Bueno, C.A., Alché, L.E. & Ramírez, J.A. (2015) . Small molecules as anti-TNF drugs. Current Medicinal Chemistry, 22(25), 2920-2942.
http://dx.doi.org/10.2174/0929867322666150729115553
---------- CHICAGO ----------
Richmond, V., Michelini, F.M., Bueno, C.A., Alché, L.E., Ramírez, J.A. "Small molecules as anti-TNF drugs" . Current Medicinal Chemistry 22, no. 25 (2015) : 2920-2942.
http://dx.doi.org/10.2174/0929867322666150729115553
---------- MLA ----------
Richmond, V., Michelini, F.M., Bueno, C.A., Alché, L.E., Ramírez, J.A. "Small molecules as anti-TNF drugs" . Current Medicinal Chemistry, vol. 22, no. 25, 2015, pp. 2920-2942.
http://dx.doi.org/10.2174/0929867322666150729115553
---------- VANCOUVER ----------
Richmond, V., Michelini, F.M., Bueno, C.A., Alché, L.E., Ramírez, J.A. Small molecules as anti-TNF drugs. Curr. Med. Chem. 2015;22(25):2920-2942.
http://dx.doi.org/10.2174/0929867322666150729115553