Artículo

Sepúlveda, C.S.; Fascio, M.L.; García, C.C.; D'Accorso, N.B.; Damonte, E.B. "Acridones as antiviral agents: Synthesis, chemical and biological properties" (2013) Current Medicinal Chemistry. 20(19):2402-2414
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Acridones are a class of compounds that have attracted attention in recent years for their wide range of biological properties, including selective inhibition of diverse human pathogenic viruses. The wide spectrum of antiviral activity includes DNA and RNA viruses, such as herpes simplex virus, cytomegalovirus, adenovirus, hepatitis C virus, dengue virus, and Junin virus, among others, indicative of the involvement of cellular factors as potential targets of acridone derivatives. At the present, their precise mode of action is not clearly determined, although the predominant action seems to be centered on the synthesis of nucleic acids. Regarding this point, inhibitory activity against cellular and viral enzymes and the ability to intercalate into nucleic acid molecules was demonstrated for some acridone compounds. Then, the possibility of a multiple effect on different targets renewed interest in these agents for virus chemotherapy allowing a potent inhibitory effectiveness associated to less feasibility of generating antiviral resistance. This review summarizes the current knowledge regarding the methods of synthesis, the antiviral properties of acridone derivatives, their mechanism of action, and structural characteristics related to antiviral activity as well as the perspectives of this class of compounds for clinical application against human viral infections. © 2013 Bentham Science Publishers.

Registro:

Documento: Artículo
Título:Acridones as antiviral agents: Synthesis, chemical and biological properties
Autor:Sepúlveda, C.S.; Fascio, M.L.; García, C.C.; D'Accorso, N.B.; Damonte, E.B.
Filiación:Laboratorio de Virología, Departamento de Química Biológica, IQUIBICEN-CONICET, Argentina
Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 1428 Buenos Aires, Argentina
Palabras clave:Acridones; Antiviral activity; Arenavirus; Cellular target; Flavivirus; Herpes simplex virus; 1 hydroxy 10 methyl 9(10h) acridone; 1,3 dihydroxy 5 methoxyacridone; 10 allyl 6 chloro 4 methoxy 9(10h) acridone; 10 allyl 6 chloro 9(10h) acridone; 2 fluoro 5 methoxy n (pyridine 3 yl)acridone 4 carboxamide; 3 allyloxy 7 methoxy 1 hydroxyacridone; 3,7 dimethoxy 1 hydroxyacridone; 5 chloro 1,3 dihydroxyacridone; 7 amino 1,3 dihydroxy 10 methyl 6 [4 (2 pyridinyl) 1 piperazinyl] 9(10h) acridone; 7 amino 1,3 dimethoxy 10 methyl 6 [4 (4 thiazol) 1 piperazinyl] 9(10h) acridone; 7 chloro 1,3 dihydroxyacridone; 7 nitro 6 chloro 1,3 dimethoxy 10 methyl 9(10h) acridone; aciclovir; acridone derivative; antivirus agent; citrusinine 1; cridanimod; cycloferon; didanosine; glycofolinine; n (3 methyl 2 butenyl) 9(10h) acridone derivative; n (pyridin 2 yl)acridone 4 carboxamide; n (pyridin 4yl)acridone 4 carboxamide; n cyclopropyl acridone 2 thioacetic acid; n cyclopropyl acridone derivative; nevirapine; s deoxydihydroglyparvin; temacrazine; unclassified drug; unindexed drug; zidovudine; antiviral activity; article; Bovine diarrhea virus; chemical reaction; cyclization; cytotoxicity; Dengue virus; DNA virus; drug mechanism; drug structure; drug synthesis; drug targeting; enzyme inhibition; Hepatitis C virus; Herpes simplex virus 1; Herpes simplex virus 2; Human adenovirus; Human cytomegalovirus; Human immunodeficiency virus 1; Junin virus; Lymphocytic choriomeningitis virus; nonhuman; substitution reaction; virus replication; Acridones; Animals; Antiviral Agents; DNA Virus Infections; DNA Viruses; Humans; RNA Virus Infections; RNA Viruses
Año:2013
Volumen:20
Número:19
Página de inicio:2402
Página de fin:2414
DOI: http://dx.doi.org/10.2174/0929867311320190002
Título revista:Current Medicinal Chemistry
Título revista abreviado:Curr. Med. Chem.
ISSN:09298673
CODEN:CMCHE
CAS:aciclovir, 59277-89-3; cridanimod, 38609-97-1; didanosine, 69655-05-6; nevirapine, 129618-40-2; zidovudine, 30516-87-1; Acridones; Antiviral Agents
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09298673_v20_n19_p2402_Sepulveda

Referencias:

  • Denny, W.A., Acridine derivatives as chemotherapeutic agents (2002) Current Medicinal Chemistry, 9 (18), pp. 1655-1665
  • Basco, L.K., Mitaku, S., Skaltsounis, A.-L., Ravelomanantsoa, N., Tillequin, F., Koch, M., Le Bras, J., In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum (1994) Antimicrobial Agents and Chemotherapy, 38 (5), pp. 1169-1171
  • Kelly, J.X., Smilkstein, M.J., Brun, R., Wittlin, S., Cooper, R.A., Lane, K.D., Janowsky, A., Riscoe, M.K., Discovery of dual function acridones as a new antimalarial chemotype (2009) Nature, 459, pp. 270-273
  • Barton, V., Fisher, N., Biagini, G.A., Ward, S.A., O'Neill, P.M., Inhibiting plasmodium cytochrome bc1: A complex issue (2010) Curr. Opin. Chem. Biol, 14, pp. 440-446
  • Valdés, A.F., Acridine and acridinones: Old and new structures with antimalarial activity (2011) Open. Med. Chem. J, 5, pp. 11-20
  • Fernández-Calienes, A., Pellón, R., Docampo, M., Fascio, M., D'Accorso, N., Maes, L., Mendiola, J., Rojas, L., Antimalarial activity of new acridinone derivatives (2011) Biomed. Pharmacother, 65, pp. 210-214
  • Pardo Andreu, G.L., Inada, N.M., Pellón, R.F., Docampo, M.L., Fascio, M.L., D'Accorso, N.B., Vercesi, A.E., New acridone derivative with trypanocidal activity (2008) Int. J. Antimicrob. Agents, 31, pp. 484-504
  • Hegde, R., Thimmaiah, P., Yerigeri, M.C., Krishnegowda, G., Thimmaiah, K.N., Houghton, P.J., Anti-calmodulin acridone derivatives modulate vinblastine resistance in multidrug resistant (MDR) cancer cells (2004) European Journal of Medicinal Chemistry, 39 (2), pp. 161-177. , DOI 10.1016/j.ejmech.2003.12.001
  • Belmont, P., Bosson, J., Godet, T., Tiano, M., Acridine and acridone derivatives, anticancer properties and synthetic methods: Where are we now? (2007) Anti-Cancer Agents in Medicinal Chemistry, 7 (2), pp. 139-169. , http://www.ingentaconnect.com/content/ben/acamc/2007/00000007/00000002/ art00001
  • Cholewinski, G., Dzierzbicka, K., Kolodziejczyk, A.M., Natural and synthetic acridines/acridones as antitumor agents: Their biological activities and methods of synthesis (2011) Pharmacol. Rep, 63, pp. 305-336
  • Kumar, R., Kumari, M., Chemistry of acridone and its analogues: A review (2011) J. Chem. Pharm. Res, 3, pp. 217-230
  • Parikh, P.K., Marvaniya, H.M., Sen, D.J., Chemistry of bioactive tricyclic fused heterocyclic ring having one heteroatom (2011) Int. J. Drug Dev. Res, 3, pp. 44-50
  • Giridhar, A., Chawla, A., Jain, S., Jain, N., Giridhar, S., Acridone alkaloids-A brief review (2010) IJPRD, 3, pp. 44-50
  • Pohs, G.D., Jones, W., 9(10H)-Acridone (1995) Acta Cryst, C51, pp. 267-268
  • Wu, T.-S., Furukawa, H., Kuoh, C.-S., Constituents of citrus depressa (rutaceae). Characterizations of five new acridone alkaloids (1982) Heterocycles, 19, pp. 273-277
  • Wu, T.-S., Kuoh, C.-S., Furukawa, H., Acridone alkaloids and a coumarin from citrus grandis (1983) Phytochemistry, 22, pp. 1493-1497
  • Wu, T.S., Kuoh, C.S., Furukawa, H., Acridone alkaloids. VI. The constituents of Citrus depressa. Isolation and structure elucidation of new acridone alkaloids from Citrus genus (1983) Chemical and Pharmaceutical Bulletin, 31 (3), pp. 895-900
  • Wu, T.S., Furukawa, H., Acridone alkaloids. VII. Constituents of Citrus sinensis Osbeck var. brasiliensis Tanaka. Isolation and characterization of three new acridone alkaloids, and a new coumarin (1983) Chemical and Pharmaceutical Bulletin, 31 (3), pp. 901-906
  • Teng, W.-Y., Huang, Y.-L., Shen, C.-C., Huang, R.-L., Chung, R.-S., Chen, C.-C., Cytotoxic acridone alkaloids from the stem bark of Citrus maxima (2005) Journal of the Chinese Chemical Society, 52 (6), pp. 1253-1255
  • Rastogi, K., Kapil, R.S., Popli, S.P., New alkaloids from glycosmis mauritiana (1980) Phytochemistry, 19, pp. 945-948
  • Chansriniyom, C., Ruangrungsi, N., Lipipun, V., Kumamoto, T., Ishikawa, T., Isolation of acridone alkaloids and n-[(4-monoterpenyloxy)phenylethyl] substituted sulfur-containing propanamide derivatives from glycosmis parva and their anti-herpes simplex virus activity (2009) Chem. Pharm. Bull, 57, pp. 1246-1250
  • Wu, T.-S., Kuoh, C.-S., Furukawa, H., Acridone alkaloids from severinia buxifolia (1982) Phytochemistry, 21, pp. 1771-1773
  • Govindachari, T.R., Viswanathan, N., Alkaloids of atalantia monophylla correa (1970) Tetrahedron, 26, pp. 2905-2910
  • Hassan, J., Sevignon, M., Gozzi, C., Schulz, E., Lemaire, M., Arylaryl bond formation one century after the discovery of the ullmann reaction (2002) Chem. Rev, 102, pp. 1359-1470
  • Pellon, R.F., Docampo, M.L., Fascio, M.L., Mild method for Ullmann reaction of 2-chlorobenzoic acids and aminothiazoles or aminobenzothiazoles under ultrasonic irradiation (2007) Synthetic Communications, 37 (11), pp. 1853-1864. , DOI 10.1080/00397910701319056, PII 779480795
  • Baqi, Y., Müller, C.E., Rapid and efficient microwave-assisted copper (0)-catalyzed ullmann coupling reaction: General access to anilinoanthraquinone derivatives (2007) Org. Lett, 9, pp. 1271-1274
  • Bueno, M.A., Silva, L.R.S.P., Corrêa, A.G., Microwave-promoted synthesis of novel n-arylanthranilic acids (2008) J. Braz. Chem. Soc, 19, pp. 1264-1269
  • Pal, C., Kumar Kundu, M., Bandyopadhyay, U., Adhikari, S., Synthesis of novel heme-interacting acridone derivatives to prevent free heme-mediated protein oxidation and degradation (2011) Bioorg. Med. Chem. Lett, 21, pp. 3563-3567
  • Stankiewicz-Drogon, A., Palchykovska, L.G., Kostina, V.G., Alexeeva, I.V., Shved, A.D., Boguszewska-Chachulska, A.M., New acridone-4-carboxylic acid derivatives as potential inhibitors of hepatitis c virus infection (2008) Bioorg. Med. Chem., 16, pp. 8846-8852
  • Stankiewicz-Drogon, A., Dorner, B., Erker, T., Boguszewska-Chachulska, A.M., Synthesis of new acridone derivatives, inhibitors of ns3 helicase, which efficiently and specifically inhibit subgenomic hcv replication (2010) J. Med. Chem, 53, pp. 3117-3126
  • Tabarrini, O., Manfroni, G., Fravolini, A., Cecchetti, V., Sabatini, S., De Clercq, E., Rozenski, J., Neyts, J., Synthesis and anti-bvdv activity of acridones as new potential antiviral agents (2006) J. Med. Chem, 49, pp. 2621-2627
  • Tabarrini, O., Cecchetti, V., Fravolini, A., Nocentini, G., Barzi, A., Sabatini, S., Miao, H., Sissi, C., Design and synthesis of modified quinolones as antitumoral acridones (1999) Journal of Medicinal Chemistry, 42 (12), pp. 2136-2144. , DOI 10.1021/jm980324m
  • Manfroni, G., Paeshuyse, J., Massari, S., Zanoli, S., Gatto, B., Maga, G., Tabarrini, O., Neyts, J., In hibition of subgenomic hepatitis c virus rna replication by acridone derivatives: Identification of an ns3 helicase inhibitor (2009) J. Med. Chem, 52, pp. 3354-3365
  • Cholody, W.M., Hernandez, L., Hassner, L., Scudiero, D.A., Djurickovic, D.B., Michejda, C.J., Bisimidazoacridones and related compounds: New antineoplastic agents with high selectivity against colon tumors (1995) J. Med. Chem, 38, pp. 3043-3052
  • Adams, J.H., Gupta, P., Shafig, K.M., Lewis, J.R., Watt, R.A., Intramolecular cyclization of 2-aminobenzophenones; a new 9-acridone synthesis (1976) J. Chem. Soc. Perkin Trans. I, 19, pp. 2089-2093
  • Ning, R.Y., Madan, P.B., Blount, J.F., Fryer, R.I., Structure and reactions of an unusual thionyl chloride oxidation product. 9-chloroacridinium 2-chloro-l-(chlorosulfinyl)-2-oxoethylide (1976) J. Org. Chem, 41, pp. 3406-3409
  • Turpin, J.A., Buckheit Jr., R.W., Derse, D., Hollingshead, M., Williamson, K., Palamone, C., Osterling, M.C., Rice, W.G., Inhibition of acute-, latent-, and chronic-phase human immunodeficiency virus type 1 (HIV-1) replication by a bistriazoloacridone analog that selectively inhibits HIV-1 transcription (1998) Antimicrobial Agents and Chemotherapy, 42 (3), pp. 487-494
  • Goodell, J.R., Madhok, A.A., Hiasa, H., Ferguson, D.M., Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity (2006) Bioorganic and Medicinal Chemistry, 14 (16), pp. 5467-5480. , DOI 10.1016/j.bmc.2006.04.044, PII S0968089606003440
  • Taraporewala, I.B., Cessac, J.W., Chanh, T.C., Delgado, A.V., Schinazig, R.F., Hiv-1 neutralization and tumor cell proliferation inhibition in vitro by simplified analogues of pyrido[4,3,2-mn ]thiazole [5,4-b]acridine marine alkaloids (1992) J. Med. Chem, 35, pp. 2744-2752
  • Xuárez, L., Pellón, R.F., Fascio, M., Montesano, V., D'Accorso, N.B., Synthesis of n-allyl and n-propadienylacridones using phasetransfer catalysis (2004) Heterocycles, 63, pp. 23-28
  • Fascio, M.L., D'Accorso, N.B., Pellon, R.F., Docampo, M.L., Synthesis of novel carbohydrate acridinone derivatives with potential biological activities using 1,3-dipolar cycloaddition (2007) Synthetic Communications, 37 (23), pp. 4209-4217. , DOI 10.1080/00397910701575178, PII 788315184
  • Sepúlveda, C.S., Fascio, M.L., Mazzucco, M.B., Docampo Palacios, M.L., Pellón, R.F., García, C.C., D'Accorso, N.B., Damonte, E.B., Synthesis and evaluation of n-substituted acridones as antiviral agents against haemorrhagic fever viruses (2008) Antivir. Chem. Chemother, 19, pp. 41-47
  • Taraporewala, I.B., Thiazolo [5,4-b]acridines and thiazolo[ 45-b]acridines probable pharmacophores of antiviral and anti-tumor marine alkaloids (1991) Tetrahedron Lett, 32, pp. 39-42
  • Lowden, C.T., Bastow, K.F., Anti-Herpes Simplex Virus Activity of Substituted 1-Hydroxyacridones (2003) Journal of Medicinal Chemistry, 46 (23), pp. 5015-5020
  • Lowden, C.T., Bastow, K.F., Cell culture replication of herpes simplex virus and, or human cytomegalovirus is inhibited by 3,7-dialkoxylated, 1-hydroxyacridone derivatives (2003) Antiviral Research, 59 (3), pp. 143-154. , DOI 10.1016/S0166-3542(03)00106-2
  • MacNeil, S.L., Gray, M., Gusev, D.G., Briggs, L.E., Snieckus, V., Carbanionic friedel-crafts equivalents. Regioselective directed ortho and remote metalation-c-n cross coupling routes to acridones and dibenzo[b,f]azepinones (2008) J. Org. Chem, 73, pp. 9710-9719
  • Zhao, J., Larock, R.C., Synthesis of xanthones, thioxanthones, and acridones by the coupling of arynes and substituted benzoates (2007) Journal of Organic Chemistry, 72 (2), pp. 583-588. , DOI 10.1021/jo0620718
  • Fang, Y., Rogness, D.C., Larock, R.C., Shi, F., Formation of acridones by ethylene extrusion in the reaction of arynes with-Lactams and dihydroquinolinones (2012) J. Org. Chem, 77, pp. 6262-6270
  • Kim, J., Stoltz, B.M., A c-n insertion of-lactam to benzyne: Unusual formation of acridone (2012) Tetrahedron Lett, 53, pp. 4994-4996
  • Whitley, R.J., Roizman, B., (2009) Clinical Virology, pp. 409-436. , Richmann D.D., Whitley R.J., Hayden F.G. Ed. ASM Press: Washington
  • Littler, E., Oberg, B., Achievements and challenges in antiviral drug discovery (2005) Antiviral Chemistry and Chemotherapy, 16 (3), pp. 155-168
  • Piret, J., Boivin, G., Resistance of herpes simplex viruses to nucleoside analogues: Mechanisms, prevalence and management (2011) Antimicrob. Agents Chemother, 55, pp. 459-472
  • Kleymann, G., Agents and strategies in development for improved management of herpes simplex virus infection and disease (2005) Expert Opinion on Investigational Drugs, 14 (2), pp. 135-161. , DOI 10.1517/13543784.14.2.135
  • Eizuru, Y., Development of new antivirals for herpesviruses (2003) Antiviral Chemistry and Chemotherapy, 14 (6), pp. 299-308
  • Yamamoto, N., Furukawa, H., Ito Yasuhiko, Yoshida, S., Maeno, K., Nishiyama, Y., Anti-herpesvirus activity of citrusinine-I, a new acridone alkaloid, and related compounds (1989) Antiviral Research, 12 (1), pp. 21-36. , DOI 10.1016/0166-3542(89)90065-X
  • Takemura, Y., Ju-ichi, M., Ito, C., Furukawa, H., Tokuda, H., Studies on the inhibitory effects of some acridone alkaloids on epstein-barr virus activation (1995) Planta Med, 61, pp. 366-368
  • Itoigawa, M., Ito, C., Wu, T.-S., Enjo, F., Tokuda, H., Nishino, H., Furukawa, H., Cancer chemopreventive activity of acridone alkaloids on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis (2003) Cancer Letters, 193 (2), pp. 133-138. , DOI 10.1016/S0304-3835(03)00008-9
  • Akanitapichat, P., Lowden, C.T., Bastow, K.F., 1,3-Dihydroxyacridone derivatives as inhibitors of herpes virus replication (2000) Antiviral Research, 45 (2), pp. 123-134. , DOI 10.1016/S0166-3542(00)00068-1, PII S0166354200000681
  • Akanitapichat, P., Bastow, K.F., The antiviral agent 5-chloro-1,3-dihydroxyacridone interferes with assembly and maturation of herpes simplex virus (2002) Antiviral Research, 53 (2), pp. 113-126. , DOI 10.1016/S0166-3542(01)00203-0, PII S0166354201002030
  • Storch, E., Kirchner, H., Brehm, G., Production of interferon-β by murine T-cell lines induced by 10-carboxymethyl-9-acridanone (1986) Scandinavian Journal of Immunology, 23 (2), pp. 195-199. , DOI 10.1111/j.1365-3083.1986.tb01958.x
  • Zarubaev, V.V., Slita, A.V., Krivitskaya, V.Z., Sirotkin, A.K., Kovalenko, A.L., Chatterjee, N.K., Direct antiviral effect of cycloferon (10-carboxymethyl-9-acridanone) against adenovirus type 6 in vitro (2003) Antiviral Research, 58 (2), pp. 131-137. , DOI 10.1016/S0166-3542(02)00193-6, PII S0166354202001936
  • Fujiwara, M., Okamoto, M., Okamoto, M., Watanabe, M., Machida, H., Shigeta, S., Konno, K., Baba, M., Acridone derivatives are selective inhibitors of HIV-1 replication in chronically infected cells (1999) Antiviral Research, 43 (3), pp. 189-199. , PII S0166354299000455
  • Houe, H., Economic impact of BVDV infection in dairies (2003) Biologicals, 31 (2), pp. 137-143. , DOI 10.1016/S1045-1056(03)00030-7
  • El-Serag, H.B., Epidemiology of viral hepatitis and hepatocellular carcinoma (2012) Gastroenterology, 142, pp. 1264-1273
  • Raney, K.D., Sharma, S.D., Moustafa, I.M., Cameron, C.E., Hepatitis c virus non-structural protein 3 (hcv ns3): A multifunctional antiviral target (2010) J. Biol. Chem, 285, pp. 22725-22731
  • Hayashi, N., Takehara, T., Antiviral therapy for chronic hepatitis c: Past, present and future (2006) J. Gastroenterol, 41, pp. 17-27
  • Kyle, J.L., Harris, E., Global spread and persistence of dengue (2008) Annu. Rev. Microbiol, 62, pp. 71-92
  • García, C.C., Sepúlveda, C.S., Damonte, E.B., Novel therapeutic targets for arenavirus hemorrhagic fevers (2011) Future Virol, 6, pp. 27-44
  • Adams, A., Crystal structures of acridines complexed with nucleic acids (2002) Current Medicinal Chemistry, 9 (18), pp. 1667-1675
  • Ebert, S.N., Shtrom, S.S., Muller, M.T., Topoisomerase II cleavage of herpes simplex virus type 1 DNA in vivo is replication dependent (1990) Journal of Virology, 64 (9), pp. 4059-4066
  • Ebert, S.N., Subramanian, D., Shtrom, S.S., Chung, I.K., Parris, D.S., Muller, M.T., Association between the p170 form of human topoisomerase II and progeny viral DNA in cells infected with herpes simplex virus type 1 (1994) Journal of Virology, 68 (2), pp. 1010-1020
  • González-Molleda, L., Wang, Y., Yuan, Y., Potent antiviral activity of topoisomerase i and ii inhibitors against kaposi's sarcomaassociated herpesvirus (2012) Antimicrob. Agents Chemother, 56, pp. 893-902
  • Kovalenko, A.L., Kazakov, V.I., Slita, A.V., Zarubaev, V.V., Sukhinin, V.P., Intracellular localization of cycloferon, its binding with dna and stimulation of cytokines expression after exposure to cycloferon (2000) Tsitologiia, 42, pp. 659-664
  • Bastow, K.F., Itoigawa, M., Furukawa, H., Kashiwada, Y., Bori, I.D., Ballas, L.M., Lee, K.H., Antiproliferative actions of 7-substituted 1,3-dihydroxyacridones; possible involvement of dna topoisomerase ii and protein kinase c as biochemical targets (1994) Bioorg. Med. Chem, 2, pp. 1403-1411
  • Watterson, S.H., Chen, P., Zhao, Y., Gu, H.H., Dhar, T.G.M., Xiao, Z., Ballentine, S.K., Iwanowicz, E.J., Acridone-based inhibitors of inosine 5'-monophosphate dehydrogenase: Discovery and SAR leading to the identification of N-(2-(6-(4-ethylpiperazin-1- yl)pyridin-3-yl)propan-2-yl)-2-fluoro-9-oxo-9,10-dihydroacridine-3-carboxamide (BMS-566419) (2007) Journal of Medicinal Chemistry, 50 (15), pp. 3730-3742. , DOI 10.1021/jm070299x
  • Nair, V., Shu, Q., Inosine monophosphate dehydrogenase as a probe in antiviral drug discovery (2007) Antiviral Chemistry and Chemotherapy, 18 (5), pp. 245-258
  • Sepúlveda, C.S., García, C.C., Fascio, M.L., D'Accorso, N.B., Docampo Palacios, M.L., Pellón, R.F., Damonte, E.B., Inhibition of junin virus rna synthesis by an antiviral acridone derivative (2012) Antiviral Res, 93, pp. 16-22
  • Bastow, K.F., New acridone inhibitors of human herpes virus replication (2002) Curr. Drug Targets Infect. Disord, 4, pp. 323-330

Citas:

---------- APA ----------
Sepúlveda, C.S., Fascio, M.L., García, C.C., D'Accorso, N.B. & Damonte, E.B. (2013) . Acridones as antiviral agents: Synthesis, chemical and biological properties. Current Medicinal Chemistry, 20(19), 2402-2414.
http://dx.doi.org/10.2174/0929867311320190002
---------- CHICAGO ----------
Sepúlveda, C.S., Fascio, M.L., García, C.C., D'Accorso, N.B., Damonte, E.B. "Acridones as antiviral agents: Synthesis, chemical and biological properties" . Current Medicinal Chemistry 20, no. 19 (2013) : 2402-2414.
http://dx.doi.org/10.2174/0929867311320190002
---------- MLA ----------
Sepúlveda, C.S., Fascio, M.L., García, C.C., D'Accorso, N.B., Damonte, E.B. "Acridones as antiviral agents: Synthesis, chemical and biological properties" . Current Medicinal Chemistry, vol. 20, no. 19, 2013, pp. 2402-2414.
http://dx.doi.org/10.2174/0929867311320190002
---------- VANCOUVER ----------
Sepúlveda, C.S., Fascio, M.L., García, C.C., D'Accorso, N.B., Damonte, E.B. Acridones as antiviral agents: Synthesis, chemical and biological properties. Curr. Med. Chem. 2013;20(19):2402-2414.
http://dx.doi.org/10.2174/0929867311320190002