Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Promoting the forage Lotus tenuis is an appealing alternative to meet the needs for cattle production in the Flooding Pampa region, Argentina. This agricultural practice requires herbicides application to remove plant species competing with L. tenuis. The use of chemical compounds, in addition to the removal of native vegetation, eventually may change the diversity of other ecosystem components such as bacterial communities. The objectives of this work were to examine the effect of L. tenuis promotion on the bacterial community composition and on specific water-related soil variables, and to detect specific bacterial taxa responding to the L. tenuis promotion. In order to achieve these objectives, here we studied three different rangeland sites of the Flooding Pampa region. At each site, two paddocks were compared, one managed to promote the forage legume L. tenuis, and the other lacking of management history and hence, covered by natural grasses. To asses bacterial diversity we used 454-FLX pyrosequencing technology of the V4 region of the 16S rRNA gene, on genomic DNA extracted from soil samples. We obtained 135.918 sequences, representing 3187 Operational Taxonomic Units (OTUs) distributed in 12 phyla and 45 classes. Overall, the main identified components of the bacterial community at the Phylum level were Acidobacteria, followed by Verrucomicrobia, Planctomycetes and Chloroflexi. Our results suggest that 5-6 years of land use with L. tenuis promotion does not affect the microbial community structure in this ecosystem. NMDS ordination in two dimensions based on Bray-Curtis distances and PERMANOVA test did not show differences in bacterial community composition between paddocks promoted or not with L. tenuis, although differences among sites were detected. In parallel, Pearson's correlation analysis suggested that L. tenuis promotion would indirectly affect members of classes Acidobacteria and Anaerolineae, through altering water-related soil properties. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Herbicide-mediated promotion of Lotus tenuis (Waldst. & Kit. ex Wild.) did not influence soil bacterial communities, in soils of the Flooding Pampa, Argentina
Autor:Nieva, A.S.; Bailleres, M.A.; Corriale, M.J.; Llames, M.E.; Menéndez, A.B.; Ruiz, O.A.
Filiación:Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Univ. Nacional de General San Martin-Consejo Nacional de Investigaciones Cientificas y Tecnicas, IIB-INTECH/UNSAM-CONICET, Chascomús, Argentina
Instituto Nacional de Tecnología Agropecuaria (INTA), Chascomús, Argentina
IEGEBA CONICET-UBA, Argentina
Dept. de Biodiversidad y Biologia Facultad de Ciencias Exactas y Naturales Univ. de Buenos Aires, PROPLAME-PRHIDEB (CONICET), Argentina
Palabras clave:Bacterial diversity; Flooding Pampa; Lotus tenuis; Promotion; Pyrosequencing; Soil water content
Año:2016
Volumen:98
Página de inicio:83
Página de fin:91
DOI: http://dx.doi.org/10.1016/j.apsoil.2015.09.011
Título revista:Applied Soil Ecology
Título revista abreviado:Appl. Soil Ecol.
ISSN:09291393
CODEN:ASECF
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09291393_v98_n_p83_Nieva

Referencias:

  • Acosta-Martinez, V., Dowd, S.E., Sun, Y., Wester, D., Allen, V., Pyrosequencing analysis for characterization of soil bacterial population as affected by an integrated livestock-cotton production system (2010) App. Soil Ecol., 45, pp. 13-25
  • Aguayo, P., González, C., Barra, R., Becerra, J., Martinez, M., Herbicides induce change in metabolic and genetic diviersity of bacterial community from a cold oligotrophic lake (2014) World J. Microbiol. Biotechnol., 30, pp. 1101-1110
  • Barriuso, J., Marín, S., Mellado, R., Effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities: a comparison with pre-emergency applied herbicide consisting of a combination of acetochlor and terbuthylazine (2010) Environ. Microbiol., 12, pp. 1021-1030
  • Barriuso, J., Valverde, J., Mellado, R., Estimation of bacterial diversity using next generation sequencing of 16S rDNA: a comparison of different workflows (2011) BMC Bioinf., 12, p. 473
  • Barriuso, J., Mellado, R.P., Glyphosate affects the rhizobacterial communities in glyphosate-tolerant cotton (2012) Appl. Soil Ecol., 55, pp. 20-26
  • Blackburn, W.H., Knight, R.W., Wood, M.K., Impact of grazing on watersheds: a state of knowledge (1982) Texas Agr. Exp. Sta. Pub., , MP-1496
  • Blake, G.R., Hartge, K.H., Bulk density (1986) Methods of Soil Analysis. Part 1, pp. 363-375. , Agron. Monogr. 9. ASA and SSSA, Madison, WI, A. Klute (Ed.)
  • Bray, J.R., Curtis, J.T., An ordination of the upland forest communities of Southern Wisconsin (1957) Ecol. Monogr., 27, pp. 249-325
  • Caporaso, G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Knight, R., QIIME allows analysis of high-throughput community sequencing data (2010) Nat. Methods, 7, pp. 335-336
  • Carrero-González, B., De La Cruz, M.T., Casermeiro, M.A., Application of magnetic resonance techniques to evaluate soil compactation after grazing (2012) J. Soil Sci. Plant Nutr., 12, pp. 165-182
  • Castro-Silva, C., Ruíz-Valdiviezo, V.M., Valenzuela-Encinas, C., Alcántara-Hernández, R.J., Navarro-Noya, Y.E., Vázquez-Nuñez, E., Luna-Guido, M., Dendooven, L., The bacterial community structure in an alkaline saline soil spiked with anthracene (2013) Electron. J. Biotechnol., 16, p. 10
  • Clarke, K.R., Green, R.H., Statistical design and analysis for a biological effects study (1988) Mar. Ecol. Prog. Ser., 46, pp. 213-226
  • Clarke, K.R., Non-parametric multivariate analyses of changes in community structure (1993) Aust. Ecol., 18, pp. 117-143
  • Criado, C.A., (2014) Lotus PAMPA INTA. Una herramienta de trabajo para los suelos bajos-inundables, , Publicación Técnica Instituto Nacional de Teconología Agropecuaria, Argentina
  • Cristea-Fernström, M., Olofsson, M., Chryssanthou, E., Jonasson, J., Petrini, B., Pyrosequencing of a short hypervariable 16S rDNA fragment for the identification of nontuberculous mycobacteria-a comparison with conventional 16S rDNA sequencing and phenotyping (2007) APMIS, 115, pp. 1252-1259
  • Cycón, M., Wójcik, M., Borymski, S., Piotrowska-Seget, Z., Short-term effects of the herbicide napropamide on the activity and structure of the soil microbial community assessed by the multi-approach analysis (2013) Appl. Soil Ecol., 66, pp. 8-18
  • Deng, Y., Cui, X., Hernández, M., Dumont, M.G., Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan plateau revealed by 16S rRNA pyrosequencing (2014) PLoS One, 9. , e 103115
  • Dowd, S.E., Callaway, T.R., Wolcott, R.D., Sun, Y., McKeehan, T., Hagevoort, R.G., Edrington, T.S., Evaluation of the bacteria diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) (2008) BMC Microbiol., 8, p. 125
  • Edgar, R.C., Search and clustering orders of magnitude faster than BLAST (2010) Bioinformatics, 26, pp. 2460-2461
  • Escaray, F.J., Menéndez, A.B., Garriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., Carrasco, P., Ruiz, O.A., Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils (2012) Plant Sci., 182, pp. 121-133
  • Ford, H., Rousk, J., Garbutt, A., Jones, L., Jones, D.L., Grazing effects on microbial community composition, growth and nutrient cycling in salt marsh and sand dune grasslands (2013) Biol. Fertil. Soils, 49, pp. 89-98
  • Fuerst, J.A., The Planctomycetes: emerging models for microbial ecology, evolution and cell biology (1995) Microbiology, 141, pp. 1493-1506
  • Gans, J., Wolinsky, M., Dunbar, J., Computational improvements reveal great bacterial diversity and high metal toxicity in soil (2005) Science, 309, pp. 1387-1390
  • Ghersa, C.M., Perelman, S.B., Burkart, S.E., León, R.J.C., Floristic and structural changes related to opportunistic soil tilling and pasture planting in grassland communities of the Flooding Pampa (2007) Biodivers. Conserv., 16, pp. 1575-1592
  • Greacen, E.L., Sands, R., Compaction of forest soils: a review (1980) Aust. Soil Res., 18, pp. 163-189
  • Griffiths, R.I., Thomson, B.C., James, P., Bell, T., Bailey, M., Whiteley, A.S., The bacterial biogeography of British soils (2011) Environ. Microbiol., 13, pp. 1642-1654
  • Grüter, D., Schmid, B., Brandl, H., Influence of plant diversity and elevated atmospheric carbon dioxide levels on belowground bacterial diversity (2006) BMC Microbiol., 6, p. 68
  • Hammer, Ø., Harper, D.A.T., Ryan, P.D., PAST-Paleontological statistics. (2001), http://www.uv.es/~pardomv/pe/2001_1/past/pastprog/past.pdf, (acessado em, 25.09.); Hotelling, H., A generalized T test and measure of multivariate dispersión (1951) Second Berkeley Symposium on Mathematical Statistics and Probability, 1, pp. 23-41
  • Hughes, J.B., Hellmann, J.J., Ricketts, T.H., Bohannan, B.J., Counting the uncountable: statistical approaches to estimating microbial diversity (2001) Appl. Environ. Microbiol., 67, pp. 4399-4406
  • Huse, S.M., Huber, J.A., Morrison, H.G., Sogin, M., Welch, D.M., Accuracy and quality of massively parallel DNA pyrosequencing (2007) Genome Biol., 8, p. R143
  • Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA Genes (2006) Appl. Environ. Microbiol., 73, pp. 1719-1728
  • Jones, R.T., Robeson, M.S., Lauber, C.L., Hamady, M., Knight, R., Fierer, N., A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses (2009) ISME J., 3, pp. 442-453
  • Köberl, M., Müller, H., Ramadan, E.M., Berg, G., Deser farming nenefits from microbial potential in arid soils and promotes diversity and plant health (2011) PLoS One, 6, p. e24452
  • Kowalchuk, G.A., Buma, D.S., de Boer, W., Klinkhamer, P.G.L., van Veen, J.A., Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms (2002) Anton. Leeuw. Int. J. Gen. Mol. Microbiol., 81, pp. 509-520
  • Lancaster, S.H., Hollister, E.B., Senseman, S.A., Gentry, T.J., Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate (2010) Pest Manag. Sci., 66, pp. 59-64
  • Lavado, R.S., Taboada, M.A., Water, salt and sodium dynamics in a natraquoll in Argentina (1988) Catena, 15, pp. 577-594
  • Legendre, P., Gallagher, E.D., Ecologically meaningful transformations for ordination species data (2001) Oecologia, 129, pp. 217-280
  • Legendre, P., Legendre, L., (1998) Numerical Ecology, , Elsevier, Amsterdam
  • Lei, G.A.N., Xin-Xua, P.E.N.G., Peth, S., Horn, R., Effects of grazing intensity on soil water regime and flux in inner mongolia grassland, China (2012) Pedosphere, 22, pp. 155-177
  • Liu, Z., Lozupone, C., Hamady, M., Bushman, F., Knight, R., Short pyrosequencing reads suffice for accurate microbial community analysis (2007) Nucleic Acid Res., 35, p. E120
  • Lupwayi, N.Z., Harker, K.N., Clayton, G.W., O'Donovan, J.T., Blackshaw, R.E., Soil microbial response to herbicides applied to glyphosate-resistant canola (2009) Agric. Ecosyst. Environ., 129, pp. 171-176
  • Luters, J.C., Salazar, J.P., (1999) Guía para la evaluación de la calidad y salud del suelo, , United States Department of Agriculture, CRN-CNIA-INTA, Buenos Aires, 88 p
  • Magurran, A.E., Population differentiation without speciation (1998) Phil. Trans. R. Soc. Lond. B, 353, pp. 275-286
  • Mannisto, M.K., Tirola, M., Haggblom, M.M., Bacterial communities in Artic fields of finnish lapland are stable but highly pH/dependent (2007) FEMS Microbiol. Ecol., 59, pp. 452-465
  • McCalla, G.R., Blackburn, I.I., Merril, W.H., LB Effects of livestock grazing on infiltration rates, Edwards Plateau of Texas (1984) J. Range Manag., 37, pp. 265-268
  • McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Hugenholtz, P., An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea (2012) ISME J., 6, pp. 610-618
  • Muirhead, R.W., Collins, R.P., Bremer, P.J., The association of E. coli and soil particles in overland flow (2006) Water Sci. Technol., 54, pp. 153-159
  • Mulholland, B., Fullen, M.A., Cattle trampling and soil compactation on loamy sands (1991) Soil Use Manag., 7, pp. 189-193
  • Naether, A., Foesel, B.U., Naegele, V., Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils (2012) Appl. Environ. Microbiol., 78, pp. 7398-7406
  • Oksanen, J., Blanchett, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Wagner, H., (2012) Vegan: community Ecology Package, , http://CRAN.R-project.org/package=vegan, R Package 2.0.3 Downloaded from on 9 May 2012
  • Olsen, G.J., The Ribosomal Database Project (1992) Nucleic Acids Res., 20, pp. 2199-2200
  • (2013) R: A Language and Environment for Statistical Computing, , http://www.R-project.org, (R Foundation for Statistical Computing, Vienna, Austria) Available at
  • Roesch, L.F.W., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K.M., Kent, A.D., Daroub, S.H., Triplett, E.W., Pyrosequencing enumerates and contrasts soil microbial diversity (2007) ISME J., 1, pp. 283-290
  • Rojas, M.C., Vázquez, P.M., Verdier, M., Noseda, R., Componentes del paisaje que favorecen la aparicián de carbunco en la Pampa Deprimida (provincia de Buenos Aires, Argentina) (2011) Rev. Sci. Tech. Off. Int. Epiz., 30, pp. 897-909
  • Rubol, S., Freixa, A., Carles-Brangari, A., Fernàndez-Garcia, D., Romaní, A.M., Sanchez-Vila, X., Connecting bacterial colonization to physical and biochemical changes in sand box infiltration experiment (2014) J. Hidrol., 517, pp. 317-327
  • Shannon, C.E., Weaver, W., (1949) The Mathematical Theory of Communication, , The University of Illinois Press, Urbana, II
  • Sierra, E.M., Montecinos, E.R., Cronología de inundaciones y sequías en la Depresión del Salado (1990) Rev. Fac. Agric., 11, pp. 35-45
  • Soriano, A., León, R.J.C., Sala, O.E., Lavado, R.S., Deregibus, V.A., Cahuepe, M.A., Scaglia, A., Lemcoff, J.H., Río de la Plata grasslands: ecosystems of the world 8A (1992) Natural Grasslands. Introduction and Western Hemisphere, pp. 367-407. , Elsevier, New York, R.T. Coupland (Ed.)
  • Striker, G.G., Insausti, P., Grimoldi, A., Ploschuk, E., Vasellati, V., Physiological and anatomical basis of differential tolerance to soil flooding of Lotus corniculatus L. and Lotus glaber Mill (2005) Plant Soil, 276, pp. 301-311
  • Sundquist, A., Ronaghi, M., Tang, H., Peyzner, P., Batzoglou, S., Whole-genome sequencing and assembly with high-throughput, short-read technologies (2007) PLoS One, 2, p. e484
  • Tang, C.Y., Mao, S.F., Ma, X.Q., Qiu, M.M., Ma, K., Zhu, M.X., Wang, Z.J., The influence of three different types of herbicides on biodiversity (2014) Adv. Mater. Res., pp. 2417-2426
  • Thom, E.R., Wildermoth, D.D., Taylor, M.J., Growth and persistence of perennial ryegrass and white clover directdrilled into a paspalum-dominant dairy pasture treated with glyphosate (1993) N. Z. J. Agric. Res., 36, pp. 197-207
  • Vandekerckhove, T.T., Willems, A., Gillis, M., Coomans, A., Ocurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longirodirae) (2000) Int. J. Syst. Evol. Microbiol., 50, pp. 2197-2205
  • Wagner, M., Horn, M., The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance (2006) Curr. Opin. Biotechnol., 17, pp. 241-249
  • Ward, N.L., Three genomes from the Phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils (2009) App. Environ. Microb., 75, pp. 2046-2056
  • White, R.P., Murray, S., Rohweder, M., (2000) Pilot Analysis of Global Ecosystems: Grassland Ecosystems, , World Resources Institute, Washington, DC
  • Will, C., Thürmer, A., Wollherr, A., Nacke, H., Herold, N., Schrumpf, M., Gutknecht, J., Daniel, R., Horizon-specific bacterial community composition of german grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes (2010) App. Environ. Microb., 76, pp. 6751-6759
  • Zul, D., Dezel, S., Kotz, A., Overnann, J., Effects of plant biomass, plant diversity, and water content on bacterial communities in soil lysimeters: Implications for the determinants of bacterial diversity (2007) App. Environ. Microb., 73, pp. 6916-6929

Citas:

---------- APA ----------
Nieva, A.S., Bailleres, M.A., Corriale, M.J., Llames, M.E., Menéndez, A.B. & Ruiz, O.A. (2016) . Herbicide-mediated promotion of Lotus tenuis (Waldst. & Kit. ex Wild.) did not influence soil bacterial communities, in soils of the Flooding Pampa, Argentina. Applied Soil Ecology, 98, 83-91.
http://dx.doi.org/10.1016/j.apsoil.2015.09.011
---------- CHICAGO ----------
Nieva, A.S., Bailleres, M.A., Corriale, M.J., Llames, M.E., Menéndez, A.B., Ruiz, O.A. "Herbicide-mediated promotion of Lotus tenuis (Waldst. & Kit. ex Wild.) did not influence soil bacterial communities, in soils of the Flooding Pampa, Argentina" . Applied Soil Ecology 98 (2016) : 83-91.
http://dx.doi.org/10.1016/j.apsoil.2015.09.011
---------- MLA ----------
Nieva, A.S., Bailleres, M.A., Corriale, M.J., Llames, M.E., Menéndez, A.B., Ruiz, O.A. "Herbicide-mediated promotion of Lotus tenuis (Waldst. & Kit. ex Wild.) did not influence soil bacterial communities, in soils of the Flooding Pampa, Argentina" . Applied Soil Ecology, vol. 98, 2016, pp. 83-91.
http://dx.doi.org/10.1016/j.apsoil.2015.09.011
---------- VANCOUVER ----------
Nieva, A.S., Bailleres, M.A., Corriale, M.J., Llames, M.E., Menéndez, A.B., Ruiz, O.A. Herbicide-mediated promotion of Lotus tenuis (Waldst. & Kit. ex Wild.) did not influence soil bacterial communities, in soils of the Flooding Pampa, Argentina. Appl. Soil Ecol. 2016;98:83-91.
http://dx.doi.org/10.1016/j.apsoil.2015.09.011