Artículo

Tosato, M.G.; Maya Girón, J.V.; Martin, A.A.; Krishna Tippavajhala, V.; Fernández Lorenzo de Mele, M.; Dicelio, L. "Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes" (2018) Materials Science and Engineering C. 90:356-364
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Trans-resveratrol (3, 5, 4′ trihydroxystilbene, RSV) is a natural compound that shows antioxidant, cardioprotective, anti-inflammatory and anticancer properties. The transdermal, painless application of RSV is an attractive option to other administration routes owing to its several advantages like avoiding gastrointestinal problems and first pass metabolism. However, its therapeutic potential is limited by its low solubility and low stability in water and the reduced permeability of stratum corneum. To overcome these inconveniences the encapsulation of this compound in a drug delivery system is proposed here. In order to find the best carrier for transdermal application of RSV various liposomal nanoparticulate carriers like conventional liposomes (L-RSV), deformable liposomes (LD-RSV), ultradeformable liposomes (LUD-RSV) and ethosomes (Etho-RSV) were assayed. Transmission electron microscopic (TEM) and dynamic light scattering (DLS) studies were performed to analyze the surface morphology of these carriers. Structural characterization for these formulations was performed by confocal Raman spectroscopy. The spectroscopic results were analysed in conjunction with calorimetric data to identify the conformational changes and stability of formulations in the different nanoparticles induced by the presence of RSV. Comparison of the results obtained with the different carrier systems (L-RSV, LD-RSV, LUD-RSV and Etho-RSV) revealed that the best RSV carrier was LD-RSV. The increase in the fluidity of the bilayers in the region of the hydrophobic chains of the phospholipid by ethanol probably facilitates the accommodation of the RSV in the bilayer and contributes to the improved encapsulation of RSV without affecting the mobility of this carrier. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes
Autor:Tosato, M.G.; Maya Girón, J.V.; Martin, A.A.; Krishna Tippavajhala, V.; Fernández Lorenzo de Mele, M.; Dicelio, L.
Filiación:The Research Institute of Theoretical and Applied Physical Chemistry (INIFTA), Universidad Nacional de La Plata, Calle 64 Diag. 113, La Plata, Buenos Aires 1900, Argentina
Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy Group, Universidade Brasil-UNBr, Rua Carolina Fonseca, 235-08230-030, Itaquera, Sao Paulo, Brazil
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka 576104, India
Universidad de Buenos Aires-INQUIMAE, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Visiting Professor, Departmento de Física, Universidade Federal do Piaui (UFPI), Campus Ministro Petronio Portella, Teresina, PI 64049-550, Brazil
Palabras clave:Confocal Raman spectroscopy; Liposomes; Nanoparticles; Resveratrol; Transdermal drug delivery; Calorimetry; Controlled drug delivery; Deformation; Dynamic light scattering; Hydrophobicity; Liposomes; Nanoparticles; Phospholipids; Raman spectroscopy; Resveratrol; Anticancer properties; Confocal Raman spectroscopy; Conformational change; Reduced permeabilities; Structural characterization; Therapeutic potentials; Transdermal drug delivery; Transdermal drug delivery systems; Targeted drug delivery; alcohol; liposome; nanoparticle; polysorbate; resveratrol; stilbene derivative; chemistry; cutaneous drug administration; drug delivery system; photon correlation spectroscopy; procedures; Raman spectrometry; skin absorption; transmission electron microscopy; Administration, Cutaneous; Drug Delivery Systems; Dynamic Light Scattering; Ethanol; Liposomes; Microscopy, Electron, Transmission; Nanoparticles; Polysorbates; Skin Absorption; Spectrum Analysis, Raman; Stilbenes
Año:2018
Volumen:90
Página de inicio:356
Página de fin:364
DOI: http://dx.doi.org/10.1016/j.msec.2018.04.073
Título revista:Materials Science and Engineering C
Título revista abreviado:Mater. Sci. Eng. C
ISSN:09284931
CAS:alcohol, 64-17-5; polysorbate, 9005-63-4; resveratrol, 501-36-0; Ethanol; Liposomes; Polysorbates; resveratrol; Stilbenes
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09284931_v90_n_p356_Tosato

Referencias:

  • Casper, R.F., Quesne, M., Rogers, I.M., Shirota, T., Jolivet, A., Milgrom, E., Savouret, J.F., Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity (1999) Mol. Pharmacol., 56 (4), pp. 784-790
  • Langcake, P., Pryce, R.J., The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury (1976) Physiol. Plant Pathol., 9 (1), pp. 77-86
  • Aluyen, J.K., Ton, Q.N., Tran, T., Yang, A.E., Gottlieb, H.B., a Bellanger, R., Resveratrol: potential as anticancer agent (2012) J. Diet. Suppl., 9 (1), pp. 45-56
  • Carter, L.G., D'Orazio, J.A., Pearson, K.J., Resveratrol and cancer: focus on in vivo evidence (2014) Endocr. Relat. Cancer, 21 (3)
  • Singh, G., Pai, R.S., Recent advances of resveratrol in nanostructured based delivery systems and in the management of HIV/AIDS (2014) J. Control. Release, 194, pp. 178-188
  • Camont, L., Cottart, C.H., Rhayem, Y., Nivet-Antoine, V., Djelidi, R., Collin, F., Beaudeux, J.L., Bonnefont-Rousselot, D., Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions (2009) Anal. Chim. Acta, 634 (1), pp. 121-128
  • Frémont, L., Biological effects of resveratrol (2001) Antioxid. Redox Signal., 3 (6), pp. 1041-1064
  • El Maghraby, G.M., Williams, A.C., Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin (2009) Expert Opin. Drug Deliv., 6 (2), pp. 149-163
  • Allen, T.M., Cullis, P.R., Liposomal drug delivery systems: from concept to clinical applications (2013) Adv. Drug Deliv. Rev., 65 (1), pp. 36-48
  • Jenning, V., Gysler, A., Schäfer-Korting, M., Gohla, S.H., Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin (2000) Eur. J. Pharm. Biopharm., 49 (3), pp. 211-218
  • Pinto-Alphandary, H., Andremont, A., Couvreur, P., Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications (2000) Int. J. Antimicrob. Agents, 13 (3), pp. 155-168
  • Kreilgraad, M., Application of a pharmacokinetic microdialysis model to assess skin penetration (2000) Cutaneous Drug Delivery Potential of Microemulsion Vehicles, , Royal Danish School of Pharmacy Kopenhagen
  • Touitou, E., Dayan, N., Bergelson, L., Godin, B., Eliaz, M., Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties (2000) J. Control. Release, 65 (3), pp. 403-418
  • Elsayed, M.M.A., Abdallah, O.Y., Naggar, V.F., Khalafallah, N.M., Lipid vesicles for skin delivery of drugs: reviewing three decades of research (2007) Int. J. Pharm., 332 (1-2), pp. 1-16
  • Cevc, G., Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery (1996) Crit. Rev. Ther. Drug Carrier Syst., 13 (3-4), pp. 257-388
  • Touitou, E., Drug delivery across the skin (2002) Expert. Opin. Biol. Ther., 2 (7), pp. 723-733
  • Trotta, M., Peira, E., Carlotti, M.E., Gallarate, M., Deformable liposomes for dermal administration of methotrexate (2004) Int. J. Pharm., 270 (1-2), pp. 119-125
  • Cevc, G., Blume, G., Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage (2004) Biochim. Biophys. Acta Biomembr., 1663 (1-2), pp. 61-73
  • Cevc, G., Blume, G., Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force (1992) BBA-Biomembranes, 1104 (1), pp. 226-232
  • Cevc, G., Schätzlein, A., Richardsen, H., Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements (2002) Biochim. Biophys. Acta Biomembr., 1564 (1), pp. 21-30
  • Godin, B., Touitou, E., Rubinstein, E., Athamna, A., Athamna, M., A new approach for treatment of deep skin infections by an ethosomal antibiotic preparation: an in vivo study (2005) J. Antimicrob. Chemother., 55 (6), pp. 989-994
  • El Maghraby, G.M.M., Williams, A.C., Barry, B.W., Skin delivery of oestradiol from lipid vesicles: importance of liposome structure (2000) Int. J. Pharm., 204 (1-2), pp. 159-169
  • Meidan, V., Alhaique, F., Touitou, E., Vesicular carriers for topical delivery (1998) Acta Technol. Legis Medicam., 9 (1), pp. 1-6
  • Anitha, P., Ramkanth, S., Sankari, K., Ethosomes-a noninvasive vesicular carrier for transdermal drug delivery (2011) Int. J. Rev. Life Sci., 1 (1), pp. 17-24
  • Hackley, V.A., Ferraris, C.F., The use of Nomenclature in Dispersion Science and Technology (2001), vol. 960 no. 3. , US Department of Commerce, Technology Administration, National Institute of Standards and Technology; Zhou, Y., Raphael, R.M., Solution pH alters mechanical and electrical properties of phosphatidylcholine membranes: relation between interfacial electrostatics, intramembrane potential, and bending elasticit (2007) Biophys. J., 92 (7), pp. 2451-2462
  • Zupančič, Š., Lavrič, Z., Kristl, J., Stability and solubility of trans-resveratrol are strongly influenced by ph and temperature (2015) Eur. J. Pharm. Biopharm., April
  • Villafuerte, L., García, B., Garzón, M.D.L., Hernández, A., Vázquez, M.L., Nanopartículas lipídicas sólidas (2008) Rev. Mex. Cienc. Farm., 39 (1), pp. 38-52
  • Lasic, D.D., Weiner, N., Riaz, M., Martin, F., Liposomes (1996) Sci. Med., 3, pp. 34-43
  • Gregor, C., Phospholipids Handbook (1993), Marcel Dekker Inc, New York; Hou, D., Xie, C., Huang, K., Zhu, C., The production and characteristics of solid lipid nanoparticles (SLNs) (2003) Biomaterials, 24 (10), pp. 1781-1785
  • Postigo, F., Mora, M., De Madariaga, M.A., Nonell, S., Sagristá, M.L., Incorporation of hydrophobic porphyrins into liposomes: characterization and structural requirements (2004) Int. J. Pharm., 278 (2), pp. 239-254
  • Vongsvivut, J., Robertson, E.G., McNaughton, D., Surface-enhanced Raman scattering spectroscopy of resveratrol (2008) Aust. J. Chem., 61 (12), pp. 921-929
  • Billes, F., Mohammed-Ziegler, I., Mikosch, H., Tyihak, E., Vibrational spectroscopy of resveratrol (2007) Spectrochim. Acta A Mol. Biomol. Spectrosc., 68 (3), pp. 669-679
  • Mélot, M., Pudney, P.D.A., Williamson, A.-M., Caspers, P.J., Van Der Pol, A., Puppels, G.J., Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy (2009) J. Control. Release, 138 (1), pp. 32-39
  • Förster, M., Bolzinger, M.-A., Ach, D., Montagnac, G., Briançon, S., Ingredients tracking of cosmetic formulations in the skin: a confocal Raman microscopy investigation (2011) Pharm. Res., 28 (4), pp. 858-872
  • Franzen, L., Selzer, D., Fluhr, J.W., Schaefer, U.F., Windbergs, M., Towards drug quantification in human skin with confocal Raman microscopy (2013) Eur. J. Pharm. Biopharm., 84 (2), pp. 437-444
  • Shah, P.P., Desai, P.R., Channer, D., Singh, M., Enhanced skin permeation using polyarginine modified nanostructured lipid carriers (2012) J. Control. Release, 161 (3), pp. 735-745
  • Koĉiŝová, E., Antalik, A., Prochazka, M., Drop coating deposition Raman spectroscopy of liposomes: role of cholesterol (2013) Chem. Phys. Lipids, 172-173, pp. 1-5
  • O'Leary, T.J., Ross, P.D., Levin, I.W., Effects of anesthetic and nonanesthetic steroids on dipalmitoylphosphatidylcholine liposomes: a calorimetric and Raman spectroscopic investigation (1984) Biochemistry, 23 (20), pp. 4636-4641
  • Guillard, E., Tfayli, A., Manfait, M., Baillet-Guffroy, A., Thermal dependence of Raman descriptors of ceramides. Part II: effect of chains lengths and head group structures (2011) Anal. Bioanal. Chem., 399 (3), pp. 1201-1213
  • Movasaghi, Z., Rehman, S., Rehman, I.U., Raman spectroscopy of biological tissues (2007) Appl. Spectrosc. Rev., 42 (5), pp. 493-541
  • Tfayli, A., Guillard, E., Manfait, M., Baillet-Guffroy, A., Thermal dependence of Raman descriptors of ceramides. Part I: effect of double bonds in hydrocarbon chains (2010) Anal. Bioanal. Chem., 397 (3), pp. 1281-1296
  • Percot, A., Lafleur, M., Direct observation of domains in model stratum corneum lipid mixtures by Raman microspectroscopy (2001) Biophys. J., 81 (4), pp. 2144-2153
  • Bunow, M.R., Levin, I.W., Molecular conformations of cerebrosides in bilayers determined by Raman spectroscopy (1980) Biophys. J., 32 (3), pp. 1007-1021
  • Neubert, R., Rettig, W., Wartewig, S., Wegener, M., Wienhold, A., Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. II. Mixtures of ceramides and saturated fatty acids (1997) Chem. Phys. Lipids, 89 (1), pp. 3-14
  • Wegener, M., Neubert, R., Rettig, W., Wartewig, S., Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. III. Mixtures of ceramides and cholesterol (1997) Chem. Phys. Lipids, 88 (1), pp. 73-82
  • Rodríguez, D.A., Utilización de Señales Fluorescentes para el Análisis y Caracterización de Vinos. Mejora de la Sensibilidad y Selectividad Mediante Derivatización Fotoquimica (2008), Universidad de Extremadura; Kronberg, B., Dahlman, A., Carlfors, J., Karlsson, J., Artursson, P., Preparation and evaluation of sterically stabilized liposomes: colloidal stability, serum stability, macrophage uptake, and toxicity (1990) J. Pharm. Sci., 79 (8), pp. 667-671
  • Subongkot, T., Wonglertnirant, N., Songprakhon, P., Rojanarata, T., Opanasopit, P., Ngawhirunpat, T., Visualization of ultradeformable liposomes penetration pathways and their skin interaction by confocal laser scanning microscopy (2013) Int. J. Pharm., 441 (1-2), pp. 151-161
  • Maheshwari, R.G.S., Tekade, R.K., Sharma, P.A., Darwhekar, G., Tyagi, A., Patel, R.P., Jain, D.K., Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: a comparative assessment (2012) Saudi Pharm. J., 20 (2), pp. 161-170

Citas:

---------- APA ----------
Tosato, M.G., Maya Girón, J.V., Martin, A.A., Krishna Tippavajhala, V., Fernández Lorenzo de Mele, M. & Dicelio, L. (2018) . Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes. Materials Science and Engineering C, 90, 356-364.
http://dx.doi.org/10.1016/j.msec.2018.04.073
---------- CHICAGO ----------
Tosato, M.G., Maya Girón, J.V., Martin, A.A., Krishna Tippavajhala, V., Fernández Lorenzo de Mele, M., Dicelio, L. "Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes" . Materials Science and Engineering C 90 (2018) : 356-364.
http://dx.doi.org/10.1016/j.msec.2018.04.073
---------- MLA ----------
Tosato, M.G., Maya Girón, J.V., Martin, A.A., Krishna Tippavajhala, V., Fernández Lorenzo de Mele, M., Dicelio, L. "Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes" . Materials Science and Engineering C, vol. 90, 2018, pp. 356-364.
http://dx.doi.org/10.1016/j.msec.2018.04.073
---------- VANCOUVER ----------
Tosato, M.G., Maya Girón, J.V., Martin, A.A., Krishna Tippavajhala, V., Fernández Lorenzo de Mele, M., Dicelio, L. Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes. Mater. Sci. Eng. C. 2018;90:356-364.
http://dx.doi.org/10.1016/j.msec.2018.04.073