Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A new biomedical material to be used as part of acrylic bone cement formulations is described. This new material is tough, its Young's Modulus is similar to the one of poly (methylmethacrylate) and the contrast agent, usually employed in acrylic bone cements, is homogeneously distributed among the polymeric matrix. Additionally, its wear coefficient is 66% lower than the one measured in poly(methyl methacrylate). The developed material is a branched polymer with polyisoprene backbone and poly(methyl methacrylate) side chains, which are capable of retaining barium sulphate nanoparticles thus avoiding their aggregation. The grafting reaction was carried out in presence of the nanoparticles, using methyl methacrylate as solvent. From the 1H-NMR spectra it was possible to determine the average number of MMA units per unit of isoprene (3.75:1). The ability to retain nanoparticles (about 8 wt.%), attributed to their interaction with the polymer branches, was determined by thermogravimetric analysis and confirmed by FTIR and microscopy techniques. By SEM microscopy it was also possible to determine the homogeneous spatial distribution of the barium sulphate nanoparticles along the polymer matrix. © 2015 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Improving bone cement toughness and contrast agent confinement by using acrylic branched polymers
Autor:Lissarrague, M.H.; Fascio, M.L.; Goyanes, S.; D'Accorso, N.B.
Filiación:CIHIDECAR-CONICET; Departamento de Química Orgánica, FCEyN - UBA, Ciudad Universitaria 1428, Ciudad Autónoma de Buenos Aires, Argentina
IFIBA - CONICET; LPandMC, Departamento de Física, FCEyN - UBA, Ciudad Universitaria 1428, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Barium sulphate nanoparticles; Branched polymer; Natural rubber; Poly(methyl methacrylate); Polyisoprene; Acrylic monomers; Barium; Biomedical engineering; Bone; Elastic moduli; Esters; Fourier transform infrared spectroscopy; Grafting (chemical); Nanoparticles; Nuclear magnetic resonance spectroscopy; Polyisoprenes; Rubber; Sulfur compounds; Thermogravimetric analysis; Acrylic bone cements; Barium sulphates; Biomedical material; Branched Polymer; Grafting reactions; Methyl methacrylates; Microscopy technique; Polymeric matrices; Bone cement; biomaterial; bone cement; contrast medium; poly(methyl methacrylate); rubber; chemistry; materials testing; Young modulus; Biocompatible Materials; Bone Cements; Contrast Media; Elastic Modulus; Materials Testing; Polymethyl Methacrylate; Rubber
Año:2016
Volumen:59
Página de inicio:901
Página de fin:908
DOI: http://dx.doi.org/10.1016/j.msec.2015.10.097
Título revista:Materials Science and Engineering C
Título revista abreviado:Mater. Sci. Eng. C
ISSN:09284931
CAS:poly(methyl methacrylate), 39320-98-4, 9008-29-1; rubber, 9006-04-6; Biocompatible Materials; Bone Cements; Contrast Media; Polymethyl Methacrylate; Rubber
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09284931_v59_n_p901_Lissarrague

Referencias:

  • Lissarrague, M.H., Fascio, M.L., Goyanes, S., D'Accorso, N.B., Acrylic bone cements: The role of nanotechnology in improving osteointegration and tunable mechanical properties (2014) J. Biomed. Nanotechnol., 10, pp. 3536-3557
  • Magnan, B., Bondi, M., Maluta, T., Samaila, E., Schirru, L., Dall'Oca, C., Acrylic bone cement: Current concept review (2013) Musculoskelet. Surg., 97, pp. 93-100
  • Graham, J., Ahn, C., Hai, N., Effect of bone density on vertebral strength and stiffness after percutaneous vertebroplasty (2007) Spine, 32, pp. E505-E511
  • Pneumaticos, S.G., Triantafyllopoulos, G.K., Evangelopoulos, D.S., Hipp, J.A., Heggeness, M.H., Effect of vertebroplasty on the compressive strength of vertebral bodies (2013) Spine J., 13, pp. 1921-1927
  • Gillani, R., Ercan, B., Quiao, A., Webster, T.J., Nanofunctionalized zirconia and barium sulfate particles as bone cement additives (2010) Int. J. Nanomedicine, 5, pp. 1-11
  • Santos, J.G.F.J., Pita, V.J.R.R., Melo, P.A., Nele, M., Pinto, J.C., Production of bone cement composites: Effect of fillers, co-monomer and particles properties (2011) Braz. J. Chem. Eng., 28, pp. 229-241
  • Arora, M., Chan, E.K.S., Gupta, S., Diwan, A.D., Polymethylmethacrylate bone cements and additives: A review of the literature (2013) World J. Orthop., 4, pp. 67-74
  • Rodrigues, D.C., Bader, R.A., Hasenwinkel, J.M., Grafting of nanospherical PMMA brushes on cross-linked PMMA nanospheres for addition in two-solution bone cements (2011) Polymer, 52, pp. 2505-2513
  • Neoh, S.B., Hashim, A.S., Highly grafted polystyrene-modified natural rubber as toughener for polystyrene (2004) J. Appl. Polym. Sci., 93, pp. 1660-1665
  • Chuayjuljit, S., Moolsin, S., Potiyaraj, P., Use of natural rubber-g-polystyrene as a compatibilizer in casting natural rubber/polystyrene blend films (2005) J. Appl. Polym. Sci., 95, pp. 826-831
  • Celestine, A.-D.N., Beiermann, B.A., May, P.A., Moore, J.S., Sottos, N.R., White, S.R., Fracture-induced activation in mechanophore-linked, rubber toughened PMMA (2014) Polymer, 55, pp. 4164-4171
  • Quan, D., Ivankovic, A., Effect of core-shell rubber (CSR) Nano-particles on mechanical properties and fracture toughness of an epoxy polymer (2015) Polymer, 66, pp. 16-28
  • Bhattacharya, A., Misra, B.N., Grafting: A versatile technique to modify polymers. Techniques, factors and applications, prog (2004) Policy. Sci., 29, pp. 767-814
  • Cangialosi, D., Lindsay, C., Mc Grail, P.T., Spadaro, G., Study of methyl methacrylate polymerization in the presence of rubbers (2001) Eur. Polym. J., 37, pp. 535-537
  • Kalkornsurapranee, E., Sahakaro, K., Kaesamann, A., Nakason, C., From a laboratory to a pilot scale production of natural rubber grafted with PMMA (2009) J. Appl. Polym. Sci., 114, pp. 587-597
  • Vayachuta, L., Phinyocheep, P., Derouet, D., Pascual, S., Synthesis of NR-g- PMMA by "grafting from" method using ATRP process (2011) J. Appl. Polym. Sci., 121, pp. 508-520
  • Derouet, D., Tran, Q.N., Leblanc, J.L., Physical and mechanical properties of poly(methyl methacrylate)-grafted natural rubber synthesized by methyl methacrylate photopolymerization initiated by N,N-diethyldithiocarbamate functions previously created on natural rubber chains (2009) J. Appl. Polym. Sci., 112, pp. 788-799
  • Azzaroni, O., Polymer Brushes, O., Here, there and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields, J. Polym. Sci. Part A (2012) Polym. Chem., 50, pp. 3225-3258
  • Ahmad, A., Rahman, M.Y.A., Su'Ait, M., Hamzah, H., Study of MG49-PMMA based solid polymer electrolyte (2011) Open Mater. Sci. J., 11, pp. 170-177
  • Ahmad, A., Rahman, M.Y.A., Harun, H., Su'Ait, M.S., Yarmo, M.A., Preparation and characterization of 49% poly(methyl methacrylate) grafted natural rubber (MG49) - Stannum (IV) oxide (SnO2) - Lithium salt based composite polymer electrolyte (2012) Int. J. Electrochem. Sci., 7, pp. 8309-8325
  • Sargsyan, A., Tonoyan, A., Davtyan, S., Shick, C., The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data (2007) Eur. Polym. J., 43, pp. 3113-3127
  • Kassman, A., Jacobson, S., Erickson, L., Hedenqvist, P., Olsson, M.A., New method for the intrinsic abrasion resistance of thin coatings (1991) Surf. Coat. Technol., 50, pp. 74-85
  • Sato, H., Tanaka, Y., 1H-NMR study of polyisoprenes (1979) J. Polym. Sci. Part A Polym. Chem., 17, pp. 3551-3558
  • Kochthongrasamee, T., Prasassarakich, P., Kiatkamjornwong, S., Effects of redox initiator on graft copolymerization of methyl methacrylate onto natural rubber (2006) J. Appl. Polym. Sci., 101, pp. 2587-2601
  • Hall-Edgefield, D.L., Shi, T., Nguyen, K., Sidorenko, A., Hybrid molecular brushes with chitosan backbone: Facile synthesis and surface grafting (2014) Appl. Mater. Interfaces, 6, pp. 22026-22033
  • Garate, H., Mondragon, I., Goyanes, S., D'Accorso, N.B., Controlled epoxidation of poly(styrene-b-isoprene-b-styrene) block copolymer for the development of nanostructured epoxy thermosets (2011) J. Polym. Sci. Part A Polym. Chem., 49, pp. 4505-4515
  • Bala, H., Fu, W., Zhao, J., Ding, X., Jiang, Y., Yu, K., Wang, Z., Preparation of BaSO4 nanoparticles with self-dispersing properties (2005) Colloids Surf. A Physicochem. Eng. ASP., 2052, pp. 129-134
  • El-Shahate, M., Saraya, I., Bakr, I.M., Synthesis of BaSO4 nanoparticles by precipitation using polycarboxylate as modifier (2011) Am. J. Nanotechnol., 2, pp. 106-111
  • Manring, L.E., Thermal degradation of poly(methy1 methacrylate). 2. Vinyl-terminated polymer (1989) Macromolecules, 22, pp. 2673-2677
  • Manring, L.E., Thermal degradation of poly(methy1 methacrylate). 4. Random side-group scission (1991) Macromolecules, 24, pp. 3304-3309
  • Oh, H., Green, P.F., Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures (2009) Nat. Mater., 8, pp. 139-143
  • Famá, L.M., Pettarin, V., Goyanes, S.N., Bernal, C.R., Starch/multi-walled carbon nanotubes composites with improved mechanical properties (2011) Carbohydr. Polym., 83, pp. 1226-1231
  • Lee, P.-L., Huang, E., Yu, S.C., High pressure raman and X-ray studies of barite, BaSO4 (2003) High Pressure Res., 23, pp. 439-450
  • Duncan, T.V., Release of engineered nanomaterials from polymer nanocomposites: The effect of matrix degradation (2015) Appl. Mater. Interfaces, 7, pp. 20-39

Citas:

---------- APA ----------
Lissarrague, M.H., Fascio, M.L., Goyanes, S. & D'Accorso, N.B. (2016) . Improving bone cement toughness and contrast agent confinement by using acrylic branched polymers. Materials Science and Engineering C, 59, 901-908.
http://dx.doi.org/10.1016/j.msec.2015.10.097
---------- CHICAGO ----------
Lissarrague, M.H., Fascio, M.L., Goyanes, S., D'Accorso, N.B. "Improving bone cement toughness and contrast agent confinement by using acrylic branched polymers" . Materials Science and Engineering C 59 (2016) : 901-908.
http://dx.doi.org/10.1016/j.msec.2015.10.097
---------- MLA ----------
Lissarrague, M.H., Fascio, M.L., Goyanes, S., D'Accorso, N.B. "Improving bone cement toughness and contrast agent confinement by using acrylic branched polymers" . Materials Science and Engineering C, vol. 59, 2016, pp. 901-908.
http://dx.doi.org/10.1016/j.msec.2015.10.097
---------- VANCOUVER ----------
Lissarrague, M.H., Fascio, M.L., Goyanes, S., D'Accorso, N.B. Improving bone cement toughness and contrast agent confinement by using acrylic branched polymers. Mater. Sci. Eng. C. 2016;59:901-908.
http://dx.doi.org/10.1016/j.msec.2015.10.097