Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Animals make use of contact chemoreception structures to examine the quality of potential food sources. During this evaluation they can detect nutritious compounds that promote feeding and recognize toxins that trigger evasive behaviors. Although animals can easily distinguish between stimuli of different gustatory qualities (bitter, salty, sweet, etc.), their ability to discriminate between compounds of the same quality may be limited. Numerous plants produce alkaloids, compounds that elicit aversive behaviors in phytophagous insects and almost uniformly evoke a bitter taste for man. In hematophagous insects, however, the effect of feeding deterrent molecules has been barely studied. Recent studies showed that feeding in Rhodnius prolixus can be negatively modulated by the presence of alkaloids such as quinine (QUI) and caffeine (CAF), compounds that elicit similar aversive responses. Here, we applied associative and non-associative learning paradigms to examine under two behavioral contexts the ability of R. prolixus to distinguish, discriminate and/or generalize between these two bitter compounds, QUI and CAF. Our results show that bugs innately repelled by bitter compounds can change their behavior from avoidance to indifference or even to preference according to their previous experiences. After an aversive operant conditioning with QUI or CAF, R. prolixus modified its behavior in a direct but also in a cross-compound manner, suggesting the occurrence of a generalization process between these two alkaloids. Conversely, after a long pre-exposure to each alkaloid, bugs decreased their avoidance to the compound used during pre-exposure but still expressed an avoidance of the novel compound, proving that QUI and CAF are detected separately. Our results suggest that R. prolixus is able to discriminate between QUI and CAF, although after an associative conditioning they express a symmetrical cross-generalization. This kind of studies adds insight into the gustatory sense of a blood-sucking model but also into the learning abilities of hematophagous insects. © 2016 Elsevier Ltd


Documento: Artículo
Título:Kissing bugs can generalize and discriminate between different bitter compounds
Autor:Asparch, Y.; Pontes, G.; Masagué, S.; Minoli, S.; Barrozo, R.B.
Filiación:Laboratorio Fisiología de Insectos, IBBEA, CONICET-UBA, DBBE, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Behavior; Bitter; Caffeine; Gustatory; Learning; Quinine; Rhodnius prolixus; caffeine; quinine; caffeine; quinine; Article; avoidance behavior; behavior assessment; chemoreceptor; exploratory behavior; feeding behavior; female; instrumental conditioning; learning; male; nonhuman; Rhodnius prolixus; sensory stimulation; taste discrimination; animal; animal behavior; conditioning; physiology; Rhodnius; taste; Animals; Avoidance Learning; Behavior, Animal; Caffeine; Conditioning (Psychology); Learning; Quinine; Rhodnius; Taste
Página de inicio:99
Página de fin:106
Título revista:Journal of Physiology Paris
Título revista abreviado:J. Physiol. Paris
CAS:caffeine, 58-08-2; quinine, 130-89-2, 130-95-0, 14358-44-2, 549-48-4, 549-49-5, 60-93-5, 7549-43-1; Caffeine; Quinine


  • Ayestaran, A., Giurfa, M., de Brito Sanchez, M., Toxic but drank: gustatory aversive compounds induce post-ingestional malaise in harnessed honeybees (2010) PLoS ONE, 5, p. e15000
  • Brasser, S.M., Mozhui, K., Smith, D.V., Differential covariation in taste responsiveness to bitter stimuli in rats (2005) Chem. Senses, 30, pp. 793-799
  • Chapman, R.F., Chemoreception: the significance of receptor neurons (1982) Adv. Insect Phys., 16, pp. 247-356
  • Chapman, R.F., Contact chemoreception in feeding by phytophagous insects (2003) Annu. Rev. Entomol., 48, pp. 455-484
  • Chen, X., Gabitto, M., Peng, Y., Ryba, N.J.P.N., Zuker, C.S.C., A gustotopic map of taste qualities in the mammalian brain (2011) Science, 333, pp. 1262-1266
  • Dethier, V.G., Crnjar, R.M., Candidate codes in the gustatory system of caterpillars (1982) J. Gen. Physiol., 79, pp. 549-569
  • El-Keredy, A., Schleyer, M., König, C., Ekim, A., Gerber, B., Behavioural analyses of quinine processing in choice, feeding and learning of larval Drosophila (2012) PLoS ONE, 7, p. e40525
  • Freeman, E.G., Dahanukar, A., Molecular neurobiology of Drosophila taste (2015) Curr. Opin. Neurobiol., 34, pp. 140-148
  • French, A., Moutaz, A.A., Mitra, A., Yanagawa, A., Sellier, M.-J., Marion-Poll, F., Drosophila bitter taste (s) (2015) Front. Integr. Neurosci., 9, pp. 1-13
  • Glendinning, J.I., Brown, H., Capoor, M., Davis, A., Gbedemah, A., Long, E., A peripheral mechanism for behavioral adaptation to specific “bitter” taste stimuli in an insect (2001) J. Neurosci., 21, pp. 3688-3696
  • Glendinning, J.I., Davis, A., Rai, M., Temporal coding mediates discrimination of “bitter” taste stimuli by an insect (2006) J. Neurosci., 26, pp. 8900-8908
  • Glendinning, J.I., Davis, A., Ramswamy, S., Ramaswamy, S., Contribution of different taste cells and signaling pathways to the discrimination of “bitter” taste stimuli by an insect (2002) J. Neurosci., 22, pp. 7281-7287. , 20026695
  • Harris, D.T., Kallman, B.R., Mullaney, B.C., Scott, K., Representations of taste modality in the Drosophila brain (2015) Neuron, 86, pp. 1449-1460
  • Hurst, V., Stevenson, P.C., Wright, G.A., Toxins induce “malaise” behaviour in the honeybee (Apis mellifera) (2014) J. Comp. Physiol. A. Neuroethol. Sens. Neural. Behav. Physiol., 200, pp. 881-890
  • Ignell, R., Okawa, S., Englund, J.-E., Hill, S., Assessment of diet choice by the yellow fever mosquito Aedes aegypti (2010) Physiol. Entomol., 35, pp. 274-286
  • Kent, L.B., Walden, K.K.O., Robertson, H.M., The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti (2008) Chem. Senses, 33, pp. 79-93
  • Kessler, S., González, J., Vlimant, M., Glauser, G., Guerin, P.M., Quinine and artesunate inhibit feeding in the African malaria mosquito Anopheles gambiae: the role of gustatory organs within the mouthparts (2014) Physiol. Entomol., 39, pp. 172-182
  • Kessler, S., Vlimant, M., Guerin, P.M., The sugar meal of the African malaria mosquito Anopheles gambiae and how deterrent compounds interfere with it: a behavioural and neurophysiological study (2013) J. Exp. Biol., 216, pp. 1292-1306
  • Lee, Y., Kang, M., Shim, J., Cheong, C., Moon, S., Montell, C., Gustatory receptors required for avoiding the insecticide L-canavanine (2012) J. Neurosci., 32, pp. 1429-1435
  • Lee, Y., Moon, S.J., Montell, C., Multiple gustatory receptors required for the caffeine response in Drosophila (2009) Proc. Natl. Acad. Sci., 106, pp. 4495-4500
  • Lee, Y., Moon, S.J., Wang, Y., Montell, C., A drosophila gustatory receptor required for strychnine sensation (2015) Chem. Senses, 40, pp. 525-533
  • Ling, F., Dahanukar, A., Weiss, L.A., Kwon, J.Y., Carlson, J.R., The molecular and cellular basis of taste coding in the Legs of Drosophila (2014) J. Neurosci., 34, pp. 7148-7164
  • Marella, S., Fischler, W., Kong, P., Asgarian, S., Rueckert, E., Scott, K., Imaging taste responses in the fly brain reveals a functional map of taste category and behavior (2006) Neuron, 49, pp. 285-295
  • Masek, P., Scott, K., Limited taste discrimination in Drosophila (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 14833-14838
  • Mesquita, R.D., Vionette, R.J., Lowenberger, C., Rivera-pomar, R., Monteiro, A., Minx, P., Spieth, J., Ellen, M., Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection (2016) Proc. Natl. Acad. Sci., 112, pp. 14936-14941
  • Meunier, N., Marion-Poll, F., Rospars, J.-P., Tanimura, T., Marion-Poll, F., Peripheral coding of bitter taste in Drosophila (2003) J. Neurobiol., 56, pp. 139-152
  • Minoli, S., Palottini, F., Manrique, G., The main component of an alarm pheromone of kissing bugs plays multiple roles in the cognitive modulation of the escape response (2013) Front. Behav. Neurosci., 7, p. 77
  • Moon, S., Köttgen, M., Jiao, Y., Xu, H., Montell, C., A taste receptor required for the caffeine response in vivo (2006) Curr. Biol., 16, pp. 1812-1817
  • Oliveira-Maia, A.J., Stapleton-Kotloski, J.R., Lyall, V., Phan, T.T., Mummalaneni, S., Melone, P., Desimone, J.A., Simon, S.A., Nicotine activates TRPM5-dependent and independent taste pathways (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 1596-1601
  • Pontes, G., Minoli, S., Ortega Insaurralde, I., de Brito Sanchez, M.G., Barrozo, R.B., Bitter stimuli modulate the feeding decision of a blood-sucking insect via two sensory inputs (2014) J. Exp. Biol., 217, pp. 3708-3717
  • Reiter, S., Campillo Rodriguez, C., Sun, K., Stopfer, M., Spatiotemporal coding of individual chemicals by the gustatory system (2015) J. Neurosci., 35, pp. 12309-12321
  • Sanford, J.L., Shields, V.D.C., Dickens, J.C., Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti (2013) Naturwissenschaften, 100, pp. 269-273
  • Schoonhoven, L.M., Biological aspects of antifeedants (1982) Entomol. Exp. Appl., 31, pp. 57-69
  • Schoonhoven, L.M., Blaney, W.M., Simmonds, M.S., Sensory coding of feeding deterrents in phytophagous insects (1992) Insect-Plant Interact., 4, pp. 59-79
  • Sfara, V., Mougabure-Cueto, G., Zerba, E., Alzogaray, R., Adaptation of the repellency response to DEET in Rhodnius prolixus (2011) J. Insect Physiol., 57, pp. 1431-1436
  • Shim, J., Lee, Y., Jeong, Y.T., Kim, Y., Lee, M.G., Montell, C., Moon, S.J., The full repertoire of Drosophila gustatory receptors for detecting an aversive compound (2015) Nat. Commun., 6, p. 8867
  • Sparks, J.T., Dickens, J.C., Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus (2016) Sci. Nat., 103, p. 39
  • Sparks, J.T., Dickens, J.C., Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria Mosquito, Anopheles quadrimaculatus (Diptera: Culicidae) (2016) J. Med. Entomol., 1-8
  • Sparks, J.T., Vinyard, B.T., Dickens, J.C., Gustatory receptor expression in the labella and tarsi of Aedes aegypti (2013) Insect Biochem. Mol. Biol., 43, pp. 1161-1171
  • Spector, A.A.C., Kopka, S.L.S., Rats fail to discriminate quinine from denatonium: implications for the neural coding of bitter-tasting compounds (2002) J. Neurosci., 22, pp. 1937-1941
  • Thorne, N., Chromey, C., Bray, S., Amrein, H., Taste perception and coding in Drosophila (2004) Curr. Biol., 14, pp. 1065-1079
  • Vinauger, C., Buratti, L., Lazzari, C.R., Learning the way to blood: first evidence of dual olfactory conditioning in a blood-sucking insect, Rhodnius prolixus. I. Aversive learning (2011) J. Exp. Biol., 214, pp. 3039-3045
  • Vinauger, C., Lallement, H., Lazzari, C.R., Learning and memory in Rhodnius prolixus: habituation and aversive operant conditioning of the proboscis extension response (2013) J. Exp. Biol., 216, pp. 892-900
  • Vinauger, C., Pereira, M.H., Lazzari, C.R., Learned host preference in a Chagas disease vector, Rhodnius prolixus (2012) Acta Trop., 122, pp. 24-28
  • Wang, Z., Singhvi, A., Kong, P., Scott, K., Taste representations in the Drosophila brain (2004) Cell, 117, pp. 981-991
  • Weiss, L., Dahanukar, A., Kwon, J., Banerjee, D., Carlson, J., The molecular and cellular basis of bitter taste in Drosophila (2011) Neuron, 69, pp. 258-272
  • Yarmolinsky, D.A., Zuker, C.S., Ryba, N.J.P., Common sense about taste: from mammals to insects (2009) Cell, 139, pp. 234-244
  • Zermoglio, P.F., Martin-Herrou, H., Bignon, Y., Lazzari, C.R., Rhodnius prolixus smells repellents: behavioural evidence and test of present and potential compounds inducing repellency in Chagas disease vectors (2015) J. Insect Physiol., 81, pp. 137-144
  • Zhang, Y., Hoon, M.A., Chandrashekar, J., Mueller, K.L., Cook, B., Wu, D., Zuker, C.S., Ryba, N.J.P., Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways (2003) Cell, 112, pp. 293-301
  • Zhou, D., van Loon, J.J.A., Wang, C.Z., Experience-based behavioral and chemosensory changes in the generalist insect herbivore Helicoverpa armigera exposed to two deterrent plant chemicals (2010) J. Comp. Physiol. A Neuroethol. Sensory, Neural Behav. Physiol., 196, pp. 791-799
  • Zhou, D.S., Wang, C.Z., van Loon, J.J.A., Chemosensory basis of behavioural plasticity in response to deterrent plant chemicals in the larva of the small cabbage white butterfly Pieris rapae (2009) J. Insect Physiol., 55, pp. 788-792


---------- APA ----------
Asparch, Y., Pontes, G., Masagué, S., Minoli, S. & Barrozo, R.B. (2016) . Kissing bugs can generalize and discriminate between different bitter compounds. Journal of Physiology Paris, 110(3), 99-106.
---------- CHICAGO ----------
Asparch, Y., Pontes, G., Masagué, S., Minoli, S., Barrozo, R.B. "Kissing bugs can generalize and discriminate between different bitter compounds" . Journal of Physiology Paris 110, no. 3 (2016) : 99-106.
---------- MLA ----------
Asparch, Y., Pontes, G., Masagué, S., Minoli, S., Barrozo, R.B. "Kissing bugs can generalize and discriminate between different bitter compounds" . Journal of Physiology Paris, vol. 110, no. 3, 2016, pp. 99-106.
---------- VANCOUVER ----------
Asparch, Y., Pontes, G., Masagué, S., Minoli, S., Barrozo, R.B. Kissing bugs can generalize and discriminate between different bitter compounds. J. Physiol. Paris. 2016;110(3):99-106.