Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Motion information provides essential cues for a wide variety of animal behaviors such as mate, prey, or predator detection. In decapod crustaceans and pterygote insects, visual codification of object motion is associated with visual processing in the third optic neuropile, the lobula. In this neuropile, tangential neurons collect motion information from small field columnar neurons and relay it to the midbrain where behavioral responses would be finally shaped. In highly ordered structures, detailed knowledge of the neuroanatomy can give insight into their function. In spite of the relevance of the lobula in processing motion information, studies on the neuroarchitecture of this neuropile are scant. Here, by applying dextran-conjugated dyes in the second optic neuropile (the medulla) of the crab Neohelice, we mass stained the columnar neurons that convey visual information into the lobula. We found that the arborizations of these afferent columnar neurons lie at four main lobula depths. A detailed examination of serial optical sections of the lobula revealed that these input strata are composed of different number of substrata and that the strata are thicker in the centre of the neuropile. Finally, by staining the different lobula layers composed of tangential processes we combined the present characterization of lobula input strata with the previous characterization of the neuroarchitecture of the crab's lobula based on reduced-silver preparations. We found that the third lobula input stratum overlaps with the dendrites of lobula giant tangential neurons. This suggests that columnar neurons projecting from the medulla can directly provide visual input to the crab's lobula giant neurons. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Organization of columnar inputs in the third optic ganglion of a highly visual crab
Autor:Bengochea, M.; Berón de Astrada, M.
Filiación:Laboratorio de Neurobiología de la Memoria, Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
Palabras clave:Crustacean; Dextran-conjugated dyes; Lobula; Neuroarchitecture; Optic neuropiles; fluorescein isothiocyanate dextran; adult; animal cell; animal tissue; Article; Brachyura; columnar neuron; functional anatomy; giant nerve cell; information processing; lamina; lobula; male; medulla; mesencephalon; movement perception; Neohelice granulata; neuroanatomy; neuropil; nonhuman; optic lobe; optic nerve; retina ganglion cell; structure activity relation; structure analysis; vision; visual information; visual stimulation; anatomy and histology; animal; eye; ganglion; innervation; nerve cell; physiology; visual system; visual system function; Animals; Brachyura; Eye; Ganglia, Invertebrate; Male; Motion Perception; Neurons; Ocular Physiological Phenomena; Vision, Ocular; Visual Pathways
Año:2014
Volumen:108
Número:2-3
Página de inicio:61
Página de fin:70
DOI: http://dx.doi.org/10.1016/j.jphysparis.2014.05.005
Título revista:Journal of Physiology Paris
Título revista abreviado:J. Physiol. Paris
ISSN:09284257
CODEN:JHYSE
CAS:fluorescein isothiocyanate dextran, 60842-46-8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09284257_v108_n2-3_p61_Bengochea

Referencias:

  • Backwell, P.R., Christy, J.H., Telford, S.R., Jennions, M.D., Passmore, N.I., Dishonest signalling in a fiddler crab (2000) Proc. R. Soc., 267, pp. 719-724
  • Berón de Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J. Comp. Physiol. A, 188, pp. 539-551
  • Berón de Astrada, M., Tuthill, J.C., Tomsic, D., Physiology and morphology of sustaining and dimming neurons of the crab Chasmagnathus granulatus (Brachyura: Grapsidae) (2009) J. Comp. Physiol. A, 195, pp. 791-798
  • Berón de Astrada, M., Medan, V., Tomsic, D., How visual space maps in the optic neuropils of a crab (2011) J. Comp. Neurol., 519, pp. 1631-1639
  • Berón de Astrada, M., Medan, V., Tomsic, D., Regionalization in the eye of the grapsid crab Neohelice granulata (=Chasmagnathus granulatus): variation of resolution and facet diameters (2012) J. Comp. Physiol. A, 198, pp. 173-180
  • Berón de Astrada, M., Bengochea, M., Sztarker, J., Delorenzi, A., Tomsic, D., Behaviorally related neural plasticity in the arthropod optic lobes (2013) Curr. Biol., 23, pp. 1389-1398
  • Christy, J.H., Pillar function in the fiddler crab Uca beebei (I): effects on male spacing and aggression (1988) Ethology, 78, pp. 53-71
  • Christy, J.H., Pillar function in the fiddler crab Uca beebei (II): competitive courtship signaling (1988) Ethology, 78, pp. 113-128
  • de Vries, S.E., Clandinin, T.R., Loom-sensitive neurons link computation to action in the Drosophila visual system (2012) Curr. Biol., 22, pp. 353-362
  • Elofsson, R., Dick, N., Myhrberg, H., A catecholaminergic neuron connecting the first two optic neuropiles (lamina ganglionaris and medulla externa) of the crayfish Pacifastacus leniusculus (1977) Cell Tissue Res., 297, pp. 287-297
  • Fischbach, K.F., Dittrich, A.P.M., The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure (1989) Cell Tissue Res., 258, pp. 441-475
  • Fotowat, H., Harrison, R., Gabbiani, F., Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors (2011) Neuron, 69, pp. 147-158
  • Friedrich, M., Tautz, D., Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods (1995) Nature, 376, pp. 165-167
  • Gelperin, A., Flores, J., Vital staining from dye-coated microprobes identifies new olfactory interneurons for optical and electrical recording (1997) J. Neurosci. Methods, 72, pp. 97-108
  • Glantz, R.M., Habituation of the motion detectors of the crayfish optic nerve: their relationship to the visually evoked defense reflex (1974) J. Neurobiol., 5, pp. 489-510
  • Glantz, R.M., McIsaac, A., Two-channel polarization analyzer in the sustaining fiber-dimming fiber ensemble of crayfish visual system (1998) J. Neurophysiol., 80, pp. 2571-2583
  • Glantz, R.M., Schroeter, J.P., Polarization contrast and motion detection (2006) J. Comp. Physiol. A, 192, pp. 905-914
  • Glantz, R.M., Miller, C.S., Nässel, D.R., Tachykinin-related peptide and GABA-mediated presynaptic inhibition of crayfish photoreceptors (2000) J. Neurosci., 20, pp. 1780-1790
  • Grienberger, C., Konnerth, A., Imaging calcium in neurons (2012) Neuron, 73, pp. 862-885
  • Haag, J., Wertz, A., Borst, A., Central gating of fly optomotor response (2010) PNAS, 107, pp. 20104-20109
  • Hafner, G.S., The neural organization of the lamina ganglionaris in the crayfish: a Golgi and EM study (1973) J. Comp. Neurol., 152, pp. 255-280
  • Hafner, G.S., The ultrastructure of retinula cell endings in the compound eye of the crayfish (1974) J. Neurocytol., 3, pp. 295-311
  • Hepp, Y., Tano, M.C., Pedreira, M.E., Freudenthal, R.A.M., NMDA-like receptors in the nervous system of the crab Neohelice granulata: a neuroanatomical description (2013) J. Comp. Neurol., 521, pp. 2279-2297
  • Homberg, U., Paech, A., Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye (2002) Arthropod Struct. Develop., 30, pp. 271-280
  • Horseman, B.G., Macauley, M.W., Barnes, W.J., Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas (2011) J. Exp. Biol., 214, pp. 1586-1598
  • Kleinlogel, S., Marshall, N.J., Photoreceptor projection and termination pattern in the lamina of gonodactyloid stomatopods (mantis shrimp) (2005) Cell Tissue Res., 321, pp. 273-284
  • Kleinlogel, S., Marshall, N.J., Horwood, J.M., Land, M.F., Neuroarchitecture of the color and polarization vision system of the stomatopod Haptosquilla (2003) J. Comp. Neurol., 467, pp. 326-342
  • Krieger, J., Sombke, A., Seefluth, F., Kenning, M., Hansson, B.S., Harzsch, S., Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs (2012) Cell Tissue Res., 348, pp. 47-69
  • Land, M., Layne, J., The visual control of behaviour in fiddler crabs I: Resolution, threshold and the role of the horizon (1995) J. Comp. Physiol. A, 177, pp. 91-103
  • Land, M., Layne, J., The visual control of behaviour in fiddler crabs II: tracking control systems in courtship and defence (1995) J. Comp. Physiol. A, 177, pp. 91-103
  • Layne, J.E., Retinal location is the key to identifying predators in fiddler crabs (Uca pugilator) (1998) J. Exp. Biol., 201, pp. 2253-2261
  • Marshall, N.J., A unique colour and polarization vision system in mantis shrimps (1988) Nature, 333, pp. 557-560
  • Marshall, J., Cronin, T.W., Kleinlogel, S., Stomatopod eye structure and function: a review (2007) Arthropod Struct. Develop., 36, pp. 420-448
  • Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J. Neurophysiol., 98, pp. 2414-2428
  • Meyer, E.P., Retrograde labelling of photoreceptors in different regions of the compound eyes of bees and ants (1984) J. Neurocytol., 13, pp. 825-836
  • Nässel, D.R., The organization of the lamina ganglionaris of the prawn, Pandalus borealis (Kröyer) (1975) Cell Tissue Res., 163, pp. 445-464
  • Nässel, D.R., Types and arrangements of neurons in the crayfish optic lamina (1977) Cell Tissue Res., 179, pp. 45-75
  • Oliva, D., Medan, V., Tomsic, D., Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae) (2007) J. Exp. Biol., 210, pp. 865-880
  • O'Shea, M., Rowell, C.H., The neuronal basis of a sensory analyser, the acridid movement detector system. II. Response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD (1976) J. Exp. Biol., 65, pp. 289-308
  • O'Shea, M., Williams, J.L.D., The anatomy and output connection of a locust visual interneurone the lobular giant movement detector (LGMD) neurone (1974) J. Comp. Physiol., 91, pp. 257-266
  • Paulk, A.C., Phillips-Portillo, J., Dacks, A.M., Fellous, J.M., Gronenberg, W., The processing of color, motion, and stimulus timing are anatomically segregated in the bumblebee brain (2008) J. Neurosci., 28, pp. 6319-6332
  • Pedreira, M.E., Romano, A., Tomsic, D., Lozada, M., Maldonado, H., Massed and spaced training build up different components of long-term habituation in the crab Chasmagnathus (1998) Anim. Learn. Behav., 26, pp. 34-45
  • Porter, M.L., Pérez-Losada, M., Crandall, K.A., Model-based multi-locus estimation of decapod phylogeny and divergence times (2005) Mol. Phylogenet. Evol., 37, pp. 355-369
  • Rind, F.C., Simmons, P.J., Seeing what is coming: building collision-sensitive neurones (1999) Trends Neurosci., 22, pp. 215-220
  • Rowell, C.H., O'Shea, M., Williams, J.L., The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli (1977) J. Exp. Biol., 68, pp. 157-185
  • Sandeman, D.C., Regionalization in the eye of the crab Leptograpsus variegatus: eye movements evoked by a target moving in different parts of the visual field (1978) J. Comp. Physiol., 306, pp. 299-306
  • Santer, R.D., Simmons, P.J., Rind, F.C., Gliding behaviour elicited by lateral looming stimuli in flying locusts (2005) J. Comp. Physiol. A, 191, pp. 61-73
  • Smolka, J., Hemmi, J.M., Topography of vision and behaviour (2009) J. Exp. Biol., 212, pp. 3522-3532
  • Stowe, S., Ribi, W.A., Sandeman, D.C., The organisation of the Lamina ganglionaris of the Crabs Scylla serrata and Leptograpsus variegatus (1977) Cell Tissue, 532, pp. 517-532
  • Strausfeld, N.J., (1976) Atlas of an Insect Brain, , Springer-Verlag, Berlin, Heidelberg, New York
  • Strausfeld, N.J., The evolution of crustacean and insect optic lobes and the origins of chiasmata (2005) Arthropod Struct. Develop., 34, pp. 235-256
  • Strausfeld, N.J., Blest, A.D., Golgi studies on insects. Part I. The optic lobes of Lepidoptera (1970) Philos. Trans. R. Soc. London B, 258, pp. 81-223
  • Strausfeld, N.J., Nässel, D.R., Neuroarchitectures serving compound eyes of Crustacea and insects (1980) Handb. Sens. Physiol., 7, p. 68
  • Sztarker, J., Tomsic, D., Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations (2008) J. Comp. Physiol. A, 194, pp. 587-596
  • Sztarker, J., Tomsic, D., Brain modularity in arthropods: individual neurons that support "what" but not "where" memories (2011) J. Neurosci., 31, pp. 8175-8180
  • Sztarker, J., Tomsic, D., Neural organization of the second optic neuropil, the medulla, in a highly visual semiterrestrial crab (2014) J. Comp. Neurol
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) J. Comp. Neurol., 493, pp. 396-411
  • Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D., Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus (2009) J. Comp. Neurol., 513, pp. 129-150
  • Tomsic, D., Berón de Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J. Neurosci., 23, pp. 8539-8546
  • Utting, M., Agricola, H., Sandeman, R., Sandeman, D., Central complex in the brain of crayfish and its possible homology with that of insects (2000) J. Comp. Neurol., 416, pp. 245-261
  • Wang-Bennett, L.T., Pfeiffer, C., Arnold, J., Glantz, R.M., Acetylcholine in the crayfish optic lobe: concentration profile and cellular localization (1989) J. Neurosci., 9, pp. 1864-1871
  • Woodbury, P.B., The geometry of predator avoidance by the blue crab, Callinectes sapidus Rathbun (1986) Anim. Behav., 34, pp. 28-37

Citas:

---------- APA ----------
Bengochea, M. & Berón de Astrada, M. (2014) . Organization of columnar inputs in the third optic ganglion of a highly visual crab. Journal of Physiology Paris, 108(2-3), 61-70.
http://dx.doi.org/10.1016/j.jphysparis.2014.05.005
---------- CHICAGO ----------
Bengochea, M., Berón de Astrada, M. "Organization of columnar inputs in the third optic ganglion of a highly visual crab" . Journal of Physiology Paris 108, no. 2-3 (2014) : 61-70.
http://dx.doi.org/10.1016/j.jphysparis.2014.05.005
---------- MLA ----------
Bengochea, M., Berón de Astrada, M. "Organization of columnar inputs in the third optic ganglion of a highly visual crab" . Journal of Physiology Paris, vol. 108, no. 2-3, 2014, pp. 61-70.
http://dx.doi.org/10.1016/j.jphysparis.2014.05.005
---------- VANCOUVER ----------
Bengochea, M., Berón de Astrada, M. Organization of columnar inputs in the third optic ganglion of a highly visual crab. J. Physiol. Paris. 2014;108(2-3):61-70.
http://dx.doi.org/10.1016/j.jphysparis.2014.05.005