Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The ability to stay alert to subtle changes in the environment and to freeze, fight or flight in the presence of predators requires integrating sensory information as well as triggering motor output to target tissues, both of which are associated with the autonomic nervous system. These reactions, which are commonly related to vertebrates, are the fundamental physiological responses that allow an animal to survive danger. The circulatory activity in vertebrates changes in opposite phases. The stage where circulatory activity is high is termed the "fight or flight stage", while the stage where circulatory activity slows down is termed the "rest and digest stage". It may be assumed that highly evolved invertebrates possess a comparable response system as they also require rapid cardiovascular and respiratory regulation to be primed when necessary. However, in invertebrates, the body plan may have developed such a system very differently. Since this topic is insufficiently studied, it is necessary to extend studies for a comparative analysis. In the present review, we use our own experimental results obtained in the crab Neohelice granulata and both older and newer findings obtained by other authors in decapod crustaceans as well as in other invertebrates, to compare the pattern of change in circulatory activity, especially in the "fight or flight" stage. We conclude that the main features of neuroautonomic regulation of the cardiac function were already present early in evolution, at least in highly evolved invertebrates, although conspicuous differences are also evident. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:New evidence on an old question: Is the "fight or flight" stage present in the cardiac and respiratory regulation of decapod crustaceans?
Autor:Canero, E.M.; Hermitte, G.
Filiación:Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Argentina
Palabras clave:"Fight or flight" stage; Alternate cardiac response; Autonomic nervous system; Decapod crustaceans; Heart rate; Invertebrates; Ventilation rate; alertness; autonomic nervous system; breathing pattern; breathing rate; cardiovascular effect; comparative anatomy; Decapoda (Crustacea); fear; fear memory; fight or flight stage; heart rate; heart rate variability; information processing; memory; Neohelice granulata; neuromodulation; neurophysiology; nonhuman; parasympathetic function; respiration control; Review; sympathetic function; aggression; anatomy and histology; animal; animal behavior; Brachyura; heart; physiology; respiratory function; Aggression; Animals; Autonomic Nervous System; Behavior, Animal; Brachyura; Decapoda (Crustacea); Fear; Heart; Respiratory Physiological Processes
Año:2014
Volumen:108
Número:2-3
Página de inicio:174
Página de fin:186
DOI: http://dx.doi.org/10.1016/j.jphysparis.2014.07.001
Título revista:Journal of Physiology Paris
Título revista abreviado:J. Physiol. Paris
ISSN:09284257
CODEN:JHYSE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09284257_v108_n2-3_p174_Canero

Referencias:

  • Alexandrowicz, J.S., The innervation of the heart of Crustacea. I. Decapoda (1932) Quart. J. Microsc. Sci., 75, pp. 181-249
  • Alexandrowicz, J.S., Nervous organs in the pericardial cavity of the decapod (1953) J. Mar. Biol. Assoc., 31, pp. 563-580
  • Ando, H., Kuwasawa, K., Neuronal and neurohormonal control of the heart in the stomatopod crustacean, Squilla oratoria (2004) J. Exp. Biol., 207, pp. 4663-4677
  • Antonsen, B.L., Paul, D.H., Serotonin and octopamine elicit stereotypical agonistic behaviors in the squat lobster Munida quadrispina (Anomura, Galatheidae) (1997) J. Comp. Physiol. A., 181, pp. 501-510
  • Axelsson, M., Ehrenstrom, F., Nilsson, S., Cholinergic and adrenergic influence on the teleost heart in vivo (1987) J. Exp. Biol., 46, pp. 179-186
  • Berntson, G.G., Sarter, M., Cacioppo, J.T., Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link (1998) Behav. Brain Res., 94, pp. 225-248
  • Burnovicz, A., Oliva, D., Hermitte, G., The cardiac response of the crab Chasmagnathus granulatus as an index of sensory perception (2009) J. Exp. Biol., 212, pp. 313-324
  • Cannon, W.B., (1929) Bodily Changes in Pain, Hunger, fear and Rage: An Account of Recent Research into the Function of Emotional Excitement, , Appleton-Century-Crofts, New York
  • Cannon, W.B., (1932) The Wisdom of the Body, , T. Kegan Paul, London
  • Carrive, P., Conditioned fear to environmental context: cardiovascular and behavioral components in the rat (2000) Brain Res., 858, pp. 440-445
  • Cohen, D.H., Macdonald, R.L., Some variables affecting orienting and conditioned heart-rate responses in the pigeon (1971) J. Comp. Physiol. Psychol., 74, pp. 123-133
  • Cooke, I.M., Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion (2002) Biol. Bull., 202, pp. 108-136
  • Cooke, I.M., Sullivan, R.E., Hormones and neurosecretion (1982) The Biology of Crustacea, 3, pp. 205-290. , Academic Press, New York
  • Cuadras, J., Cardiac responses to visual detection of movement, mechanostimulation and cheliped imposed movement in hermit crabs (1980) Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 66, pp. 113-117
  • Cuadras, J., Behavioral determinants of severe cardiac inhibition (1981) J. Comp. Physiol. Psychol., 9, pp. 384-392
  • Cumberlidge, N., Uglow, R.F., Heart and scaphognathite activity in the shore crab Carcinus maenas (1977) J. Exp. Mar. Biol. Ecol., 28, pp. 87-107
  • Davis, M., The role of the amygdala in conditioned fear (1992) The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction, pp. 255-305. , Wiley-Liss, New York, J.P. Appleton (Ed.)
  • Delgado, J.Y., Oyola, E., Miller, M.W., Localization of GABA- and glutamate-like immunoreactivity in the cardiac ganglion of the lobster Panulirus argus (2000) J. Neurocytol., 29, pp. 605-619
  • Dingle, H., Strategies of agonistic behavior in Crustacea (1983) Studies in Adaptation: The Behavior of Higher Crustacea, pp. 113-139. , Wiley and Sons, New York, S. Rebacha, D.W. Dunham (Eds.)
  • Field, L.H., Larimer, J.L., The cardioregulatory system of crayfish: neuroanatomy and physiology (1975) J. Exp. Biol., 62, pp. 519-530
  • Field, L.H., Larimer, J.L., The cardioregulatory system of crayfish: the role of circumoesophageal interneurones (1975) J. Exp. Biol., 62, pp. 531-543
  • Fingerman, M., Crustacean endocrinology: a retrospective, prospective, and introspective analysis (1997) Physiol. Zool., 70, pp. 257-269
  • Florey, E., Kriebel, M.E., The effects of temperature, anoxia and sensory stimulation on the heart rate of unrestrained crabs (1974) Comp. Biochem. Physiol. A Physiol., 48, pp. 285-300
  • Fort, T.J., Brezina, V., Miller, M.W., Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus (2004) J. Neurophysiol., 92, pp. 3455-3470
  • Freschi, J.E., Livengood, D.R., Membrane current underlying muscarinic cholinergic excitation of motoneurons in lobster cardiac ganglion (1989) J. Neurophysiol., 62, pp. 984-995
  • Graham, F.K., Clifton, R.K., Heart-rate change as a component of the orienting response (1966) Psychol. Bull., 65, pp. 305-320
  • Grega, D.S., Sherman, G., Responsiveness of neurogenic hearts to octopamine (1975) Comp. Biochem. Physiol., 52, pp. 5-8
  • Grober, M.S., Luminescent flash avoidance in the nocturnal crab Portunus xantussii. I. The effects of luminescence and mechanical stimulation on heart rate (1990) J. Exp. Biol., 148, pp. 415-426
  • Grober, M.S., Luminescent flash avoidance in the nocturnal crab Portunus xantussii. II. Cardiac and visual responses to variations in simulated luminescent flashes (1990) J. Exp. Biol., 148, pp. 427-448
  • Guirguis, M.S., Wilkens, J.L., The role of the cardioregulatory nerves in mediating heart rate responses to locomotion, reduced stroke volume, and neurohormones in Homarus americanus (1995) Biol. Bull., 188, pp. 179-185
  • Guyton, A.C., (1991) Textbook of Medial Physiology, , W.B. Saunders, Toronto
  • Harris, A.H., Brady, J.V., Animal learning. Visceral and autonomic conditioning (1974) Annu. Rev. Psychol., 25, pp. 107-133
  • Hermitte, G., Maldonado, H., Cardiovascular component of the context signal memory in the crab Chasmagnathus (2006) J. Comp. Physiol. A Neuroethol. Sensory Neural Behav. Physiol., 192, pp. 69-83
  • Hernandez-Falcon, J., Basu, A.C., Govindasamy, S., Kravitz, E.A., Changes in heart rate associated with contest outcome in agonistic encounters in lobsters (2005) Cell. Mol. Neurobiol., 25, pp. 329-343
  • Huber, R., Panksepp, J.B., Yue, Z., Delago, A., Moore, P., Dynamic interactions of behavior and amine neurochemistry in acquisition and maintenance of social rank in crayfish (2001) Brain Behav. Evol., 57, pp. 271-282
  • Hyatt, G.W., Qualitative and quantitative dimensions of crustacean aggression (1983) Studies in Adaptation: The Behavior of Higher Crustacea, pp. 113-139. , Wiley & Sons, New York, S. Rebacha, D.W. Dunham (Eds.)
  • Ide, L.M., Hoffmann, A., Stressful and behavioral conditions that affect reversible cardiac arrest in the Nile tilapia, Oreochromis niloticus (Teleostei) (2002) Physiol. Behav., 75, pp. 119-126
  • Jacobsen, N.K., Alarm bradycardia in white-tailed deer fawns (Odocoileus virginianus) (1979) J. Mamm., 60, pp. 343-349
  • Kerrison, J., Freschi, J.E., The effects of gamma-aminobutyric acid on voltage-clamped motoneurons of the lobster cardiac ganglion (1992) Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 101, pp. 227-233
  • King, A.J., Adamo, S.A., The ventilatory, cardiac and behavioural responses of resting cuttlefish (Sepia officinalis L.) to sudden visual stimuli (2006) J. Exp. Biol., 209, pp. 1101-1111
  • Kravitz, E.A., Hormonal control of behavior: amines and the biasing of behavioral output in lobsters (1988) Science, 241, pp. 1775-1781
  • Kravitz, E.A., Huber, R., Aggression in invertebrates (2003) Curr. Opin. Neurobiol., 13, pp. 736-743
  • Krontiris-Litowitz, J., Sensitizing stimulation causes a long-term increase in heart rate in Aplysia californica (1999) J. Comp. Physiol. A. Neuroethol. Sens. Neural Behav. Physiol., 185, pp. 181-186
  • Kuramoto, T., Yamagishi, H., Physiological anatomy, burst formation, and burst frequency of the cardiac ganglion of crustaceans (1990) Physiol. Zool., 63, pp. 102-116
  • Laming, P.R., Austin, M., Cardiac responses of the anurans, Bufo bufo and Rana pipiens, during behavioural arousal and fright. Comparative Biochemistry and Physiology (1981) Comp. Biochem. Physiol. Part A Physiol., 68, pp. 515-518
  • Laming, P.R., Savage, G.E., Physiological changes observed in the goldfish (Carassius auratus) during behavioral arousal and fright (1980) Behav. Neural Biol., 29, pp. 255-275
  • Larimer, J.L., Tindel, J.R., Sensory modifications of heart rate in crayfish (1966) Anim. Behav., 14, pp. 239-245
  • Li, H., Listerman, L.R., Doshi, D., Cooper, R.L., Heart rate measures in blind cave crayfish during environmental disturbances and social interactions (2000) Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 127, pp. 55-70
  • Listerman, L.R., Deskins, J., Bradacs, H., Cooper, R.L., Heart rate within male crayfish: social interactions and effects of 5-HT (2000) Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 125, pp. 251-263
  • Maldonado, H., Crustacean as model to investigate memory illustrated by extensive behavioral and physiological studies in Chasmagnathus (2002) The Crustacean Nervous System, pp. 314-327. , Springer, Berlin, Heidelberg, New York, K. Wiese (Ed.)
  • Maynard, D.M., Cardiac inhibition in decapod Crustacea (1961) Nervous Inhibition, pp. 144-178. , Pergamon Press, London, New York, Paris:, E. Florey (Ed.)
  • McGaw, I.J., Wilkens, J.L., McMahon, B.R., Airriess, C.N., Crustacean cardioexcitatory peptides may inhibit the heart in vivo (1995) J. Exp. Biol., 198, pp. 2547-2550
  • McMahon, B.R., Wilkens, J.L., Simultaneous apnoea and bradycardia in the lobster Homarus americanus (1972) Can. J. Zool., 50, pp. 165-170
  • McMahon, B.R., Wilkens, J.L., Ventilation, perfusion and oxygen uptake (1983) Biology of Crustacea, vol. 6, , Academic Press, New York, L. Mantel, D. Bliss (Eds.)
  • Miller, E.N., Learning of visceral and glandular responses (1969) Science, 163, pp. 434-445
  • Mislin, H., Experimenteller Nachweis der Beeinflussung des Elektrokardiogramms (EKG) dekapoder Krebse (Astacus fluviatilis F., Astacus leptodactylus E., Carcinus maenas L.) durch optische Reize (optocardialer Hemmreflex) (1966) Rev. Suisse Zool., 73, pp. 301-312
  • Nieuwenhuys, R., Ten Donkelaar, H.J., Nicholson, C., Smeets, W.J.A.J., (1998) The Central Nervous SYSTEM of Vertebrates: An Introduction to Structure and Function, , Springer, Heidelberg
  • Nozdrachev, A.D., (1983) The Physiology of the Autonomic Nervous System, , Meditsina, Leningrad. (in Russian)
  • Pavlov, I.P., Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex (1927) Translator, , Oxford University Press, Oxford, G.V. Anrep (Ed.)
  • Pedetta, S., Kaczer, L., Maldonado, M., Individual aggressiveness in the crab Chasmagnathus: influence in fight outcome and 2 modulation by serotonin and octopamine (2010) Physiol. Behav., 101, pp. 438-445
  • Powell, D.A., Rapid associative learning: conditioned bradycardia and its central nervous system substrates (1994) Integr. Physiol. Behav. Sci., 29, pp. 109-133
  • Rutishauser, R.L., Cromarty, S.I., Basu, A.C., Kravitz, E.A., Long-term consequences of agonistic interactions between socially naive juvenile American lobsters (Homarus americanus) (2004) Biol. Bull., 207, pp. 183-187
  • Sarnat, H.B., Netsky, M.G., Evolutionary origin of the central nervous system. When does a ganglion become a brain? (2002) Semin. Pediatr. Neurol., 9, pp. 240-253
  • Schapker, H., Breithaupt, T., Shuranova, Z., Burmistrov, Y., Cooper, R.L., Heart and ventilatory measures in crayfish during environmental disturbances and social interactions (2002) Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 131, pp. 397-407
  • Shimahara, T., (1969) The inhibitory post-synaptic potential in the cardiac ganglion cell of the lobster, pp. 9-26. , Panulirus japonicus Science Reports of Tokyo Kyoiku Daigaku 14B
  • Shimizu, H., Okabe, M., Evolutionary origin of autonomic regulation of physiological activities in vertebrate phyla (2007) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 193, pp. 1013-1019
  • Shuranova, Z.P., Burmistrov, Y.M., Orienting reaction in invertebrates (1996) Neurosci. Behav. Physiol., 26, pp. 406-415
  • Shuranova, Z.P., Burmistrov, Y.M., Strawn, J.R., Cooper, R.L., Evidence for an autonomic nervous system in Decapod Crustaceans (2006) Int. J. Zool. Res., 3, pp. 1-33
  • Smith, E.N., Allison, R.D., Crowder, W.E., Bradycardia in a free ranging American alligator (1974) Copeia, pp. 770-772
  • Smith, E.N., Johnson, C., Martin, K.J., Fear RCA in captive eastern chipmunk, Tamias striatus (1981) Comp. Biochem. Physiol., 70 A, pp. 529-532
  • Smith, E.N., Woodruff, R.A., Fear bradycardia in free ranging woodchucks, Marmota monax (1980) J. Mammal., 61, pp. 750-753
  • Stiedl, O., Tovote, P., Ogren, S.O., Meyer, M., Behavioral and autonomic dynamics during contextual fear conditioning in mice (2004) Auton Neurosci., 115, pp. 15-27
  • Sullivan, R.E., Miller, M.W., Cholinergic activation of the lobster cardiac ganglion (1990) J. Neurobiol., 21, pp. 639-650
  • Tanaka, K., Yazawa, T., Kuwasawa, K., Cholinergic and GABAergic control of the heart in the isopod crustacean, Bathynomus doederleini (1992) Phylogenetic Models in Functional Coupling of the CNS and the cardiovascular System, Comparative Physiology, pp. 132-140. , Karger, Basel, R.B. Hill, K. Kuwasawa, R.R. McMahon, T. Kuramoto (Eds.)
  • Taylor, E.W., Spontaneous activity in the cardioaccelerator nerves of the crayfish, Astacus pallipes Lereboullet (1970) Comp. Biochem. Physiol., 33, pp. 859-869
  • Taylor, E.W., Control and co-ordination of ventilation and circulation in crustaceans: responses to hypoxia and exercise (1982) J. Exp. Biol., 100, pp. 289-319
  • Thon, B., Habituation of cardiac and motor responses to a moving visual stimulus in the blowfly (Calliphora vomitoria) (1980) J. Comp. Physiol. Psychol., 94, pp. 886-893
  • Watanabe, H., Mizunami, M., Pavlov's cockroach: classical conditioning of salivation in an insect (2007) PLoS One, 2, p. e529
  • Watanabe, H., Sato, C., Kuramochi, T., Nishino, H., Mizunami, M., Salivary conditioning with antennal gustatory unconditioned stimulus in an insect (2008) Neurobiol. Learn. Mem., 90, pp. 245-254
  • Wells, M.J., Nervous control of the heartbeat in octopus (1980) J. Exp. Biol., 85, pp. 111-128
  • Wells, M.J., Duthie, G.G., Houlihan, D.F., Smith, P.J.S., Wells, J., Blood flow and pressure changes in exercising octopuses (Octopus vulgaris) (1987) J. Exp. Biol., 131, pp. 175-187
  • Wilkens, J.L., Neuronal control of respiration in decapod Crustacea (1976) Fed. Proc., 35, pp. 2000-2006
  • Wilkens, J.L., The control of cardiac rhythmicity and of blood distribution in crustaceans (1999) Comp. Biochem. Physiol. A, 124, pp. 531-538
  • Wilkens, J.L., McMahon, B.R., Intrinsic properties and extrinsic neurohormonal control of the crab cardiac hemodynamics (1992) Experientia, 48, pp. 827-834
  • Wilkens, J.L., Wilkens, L.A., McMahon, B.R., Central control of cardiac and scaphognathite pacemakers in the crab (1974) J. Comp. Physiol. A., 90, pp. 89-104
  • Wingfield, J.C., Control of behavioural strategies for capricious environments (2003) Anim. Behav., 66, pp. 807-816
  • Yang, M., Carbó Tano, M., Freudenthal, R., Hermitte, G., Characterization of the cardiac ganglion in the crab Neohelice granulata and immunohistochemical evidence of GABA-like extrinsic regulation (2012) Arthropod Struct. Develop., 42, pp. 17-25
  • Yang, M., Carbó Tano, M., Hermitte, G., Picrotoxin but not Bicuculline partially abolishes the cardio-inhibitory response induced by visual stimulation in the crab Neohelice granulata (2013) Physiol. Behav., 111, pp. 198-205
  • Yazawa, T., Kuwasawa, K., Intrinsic and extrinsic neural and neurohumoral control of the decapod heart (1992) J. Cell. Mol. Life Sci., 48, pp. 834-840
  • Yazawa, T., Kuwasawa, K., Dopaminergic acceleration and GABAergic inhibition in extrinsic neural control of the hermit crab heart (1994) J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 174, pp. 65-75
  • Young, R.E., Correlated activities in the cardioregulator nerves and ventilatory system in the Norwegian lobster, Nephrops norvegicus (L.) (1978) Comp. Biochem. Physiol., 61 A, pp. 387-394

Citas:

---------- APA ----------
Canero, E.M. & Hermitte, G. (2014) . New evidence on an old question: Is the "fight or flight" stage present in the cardiac and respiratory regulation of decapod crustaceans?. Journal of Physiology Paris, 108(2-3), 174-186.
http://dx.doi.org/10.1016/j.jphysparis.2014.07.001
---------- CHICAGO ----------
Canero, E.M., Hermitte, G. "New evidence on an old question: Is the "fight or flight" stage present in the cardiac and respiratory regulation of decapod crustaceans?" . Journal of Physiology Paris 108, no. 2-3 (2014) : 174-186.
http://dx.doi.org/10.1016/j.jphysparis.2014.07.001
---------- MLA ----------
Canero, E.M., Hermitte, G. "New evidence on an old question: Is the "fight or flight" stage present in the cardiac and respiratory regulation of decapod crustaceans?" . Journal of Physiology Paris, vol. 108, no. 2-3, 2014, pp. 174-186.
http://dx.doi.org/10.1016/j.jphysparis.2014.07.001
---------- VANCOUVER ----------
Canero, E.M., Hermitte, G. New evidence on an old question: Is the "fight or flight" stage present in the cardiac and respiratory regulation of decapod crustaceans?. J. Physiol. Paris. 2014;108(2-3):174-186.
http://dx.doi.org/10.1016/j.jphysparis.2014.07.001