Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The review proposes a comparison between recurrent inhibition in motor systems of vertebrates and the leech nervous system, where a detailed cellular and functional analysis has been accomplished. A comparative study shows that recurrent inhibition is a conserved property in motor systems of phylogenetically distant species. Recurrent inhibition has been extensively characterized in the spinal cord of mammals, where Renshaw cells receive excitatory synaptic inputs from motoneurons (MNs) and, in turn, exert an inhibitory effect on the MNs. In the leech, a recurrent inhibitory circuit has been described, centered around a pair of nonspiking (NS) neurons. NS are linked to every excitatory MN through rectifying electrical junctions. And, in addition, the MNs are linked to the NS neurons through hyperpolarizing chemical synapses. Functional analysis of this leech circuit showed that heteronymous MNs in the leech are electrically coupled and this coupling is modulated by the membrane potential of NS neurons. Like Renshaw cells, the membrane potential of NS neurons oscillates in phase with rhythmic motor patterns. Functional analysis performed in the leech shows that NS influences the activity of MNs in the course of crawling suggesting that the recurrent inhibitory circuit modulates the motor performance. © 2014.

Registro:

Documento: Artículo
Título:Recurrent inhibition in motor systems, a comparative analysis
Autor:Szczupak, L.
Filiación:Departamento de Fisiología, Biología Molecular y Celular, FCEN-UBA and IFIBYNE UBA-CONICET, Pabellón II, piso 2, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Electrical coupling; Leech; Motor control; Nonspiking neuron; Recurrent inhibition; chemical synapse; comparative study; electrical coupling; electrical synapse; leech; motoneuron; motor performance; motor system; nerve cell; nerve cell inhibition; nerve cell membrane potential; nervous system electrophysiology; neuromodulation; nonhuman; nonspiking neuron; oscillatory potential; recurrent inhibition; Renshaw cell; Review; spinal cord; synapse; synaptic potential; vertebrate; animal; efferent nerve; electrophysiology; phylogeny; physiology; Animals; Efferent Pathways; Electrophysiological Processes; Leeches; Motor Neurons; Neural Inhibition; Phylogeny; Synapses
Año:2014
Volumen:108
Número:2-3
Página de inicio:148
Página de fin:154
DOI: http://dx.doi.org/10.1016/j.jphysparis.2014.05.004
Título revista:Journal of Physiology Paris
Título revista abreviado:J. Physiol. Paris
ISSN:09284257
CODEN:JHYSE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09284257_v108_n2-3_p148_Szczupak

Referencias:

  • Alvarez, F.J., Fyffe, R.E., The continuing case for the Renshaw cell (2007) J. Physiol., 584, pp. 31-45
  • Baader, A.P., Interneuronal and motor patterns during crawling behavior of semi-intact leeches (1997) J. Exp. Biol., 200, pp. 1369-1381
  • Bizzi, E., Tresch, M.C., Saltiel, P., dÁvella, A., New perspectives on spinal motor systems (2000) Nat. Rev. Neurosci., 1, pp. 101-108
  • Brink, E.E., Suzuki, I., Recurrent inhibitory connexions among neck motoneurones in the cat (1987) J. Physiol., 383, pp. 301-326
  • Brodfuehrer, P.D., Friesen, W.O., Initiation of swimming activity by trigger neurons in the leech subesophageal ganglion. I. Output connections of Tr1 and Tr2 (1986) J. Comp. Physiol., 159, pp. 489-502
  • Burrows, M., Local circuits for the control of leg movements in an insect (1992) TINS, 15, pp. 226-232
  • Buschges, A., Akay, T., Gabriel, J.P., Schmidt, J., Organizing network action for locomotion: insights from studying insect walking (2008) Brain Res. Rev., 57, pp. 162-171
  • Buschges, A., Scholz, H., El Manira, A., New moves in motor control (2011) Curr. Biol., 21, pp. R513-R524
  • Cannon, W.B., Organization for physiological homeostasis (1929) Physiol. Rev., 9, pp. 399-431
  • Clarac, F., Cattaert, D., Le Ray, D., Central control components of a simplé stretch reflex (2000) TINS, 23, pp. 199-208
  • Eccles, J.C., Fatt, P., Koketsu, K., Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons (1954) J. Physiol., 126, pp. 524-562
  • Edwards, D.H., Heitler, W.J., Krasne, F.B., Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish (1999) TINS, 22, pp. 153-161
  • Eisenhart, F.J., Cacciatore, T.W., Kristan, W.B., A central pattern generator underlies crawling in the medicinal leech (2000) J. Comp. Physiol. A, 186, pp. 631-643
  • Frank, E., Jansen, J.K.S., Rinvik, E., A multisomatic axon in the central nervous system of the leech (1975) J. Comp. Neurol., 159, pp. 1-14
  • Gray, J., Lissmann, H.W., Pumphrey, R.J., The mechanism of locomotion in the leech (Hirudo medicinalis Ray) (1938) J. Exp. Biol., 15, pp. 408-430
  • Graziano, M.S., Taylor, C.S., Moore, T., Complex movements evoked by microstimulation of precentral cortex (2002) Neuron, 34, pp. 841-851
  • Graziano, M.S.A., Taylor, C.S.R., Moore, T., Cooke, D.F., The cortical control of movement revisited (2002) Neuron, 38, pp. 349-362
  • Grillner, S., The motor infrastructure: from ion channels to neuronal networks (2003) Nat. Rev. Neurosci., 4, pp. 573-586
  • Hamm, T.M., Recurrent inhibition to and from motoneurons innervating the flexor digitorum and flexor hallucis longus muscles of the cat (1990) J. Neurophysiol., 63, pp. 395-403
  • Hultborn, H., Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond (2006) Prog. Neurobiol., 78, pp. 215-232
  • Iscla, I.R., Arini, P.D., Szczupak, L., Differential channeling of sensory stimuli onto a motor neuron in the leech (1999) J. Comp. Physiol., 184, pp. 233-241
  • Kristan, W.B., Stent, G.S., Ort, C.A., Neuronal control of swimming in the medicinal leech: I. Dynamics of the swimming rhythm (1974) J. Comp. Physiol., 94, pp. 97-119
  • Kristan, W.B., Calabrese, R.L., Friesen, W.O., Neuronal control of leech behavior (2005) Prog. Neurobiol., 76, pp. 279-327
  • Lockery, S.R., Wittenberg, G., Kristan, W.B., Cottrell, G.W., Function of identified interneurons in the leech elucidated using neural networks trained by back-propagation (1989) Nature, 340, pp. 468-471
  • Mann, K.H., (1962) Leeches (Hirudinae). Their Structure, Physiology, Ecology and Embryology, , Pergamon Press, New York
  • Marder, E., Goaillard, J.M., Variability, compensation and homeostasis in neuron and network function (2006) Nat. Rev. Neurosci., 7, pp. 563-574
  • McCrea, D.A., Spinal circuitry of sensorimotor control of locomotion (2001) J. Physiol., 533 (1), pp. 44-50
  • McCrea, D.A., Pratt, C.A., Jordan, L.M., Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion (1980) J. Neurophysiol., 44, pp. 475-488
  • Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Mulloney, B., Smarandache-Wellmann, C., Neurobiology of the crustacean swimmeret system (2012) Prog. Neurobiol., 96, pp. 242-267
  • Nicholls, J.G., Baylor, D.A., Specific modalities and receptive fields of sensory neurons in CNS of the leech (1968) J. Neurophysiol., 31, pp. 740-756
  • Nicholls, J.G., Purves, D., Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech (1970) J. Physiol., 209, pp. 647-667
  • Nishimaru, H., Restrepo, C.E., Kiehn, O., Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice (2006) J. Neurosci., 26, pp. 5320-5328
  • Orlovsky, G.N., Deliagina, T.G., Grillner, S., (1999) Neuronal Control of Locomotion, , Oxford University Press
  • Ort, C.A., Kristan, W.B., Stent, G.S., Neuronal control of swimming in the medicinal leech (1974) J. Comp. Physiol. A, 94, pp. 121-154
  • Poppele, R.B.G., Sophisticated spinal contributions to motor control (2003) TINS, 26, pp. 269-276
  • Pratt, C.A., Jordan, L.M., Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion (1987) J. Neurophysiol., 57, pp. 56-71
  • Rela, L., Szczupak, L., Coactivation of motoneurons regulated by a network combining electrical and chemical synapses (2003) J. Neurosci., 23, pp. 682-692
  • Rela, L., Szczupak, L., In situ characterization of a rectifying electrical junction (2007) J. Neurophysiol., 97, pp. 1405-1412
  • Rela, L., Yang, S.M., Szczupak, L., Calcium spikes in a leech nonspiking neuron (2009) J. Comp. Physiol., 195, pp. 139-150
  • Renshaw, B., Influence of discharge of motoneurons upon excitation of neighbouring motoneurons (1941) J. Neurophysiol., 4, pp. 167-183
  • Rodriguez, M.J., Perez-Etchegoyen, C.B., Szczupak, L., Premotor nonspiking neurons regulate coupling among motoneurons that innervate overlapping muscle fiber population (2009) J. Comp. Physiol. A, 195, pp. 1432-1451
  • Rodriguez, M.J., Alvarez, R.J., Szczupak, L., Effect of a nonspiking neuron on motor patterns of the leech (2012) J. Neurophysiol., 107, pp. 1917-1924
  • Stein, P.S.G., Motor systems, with specific reference to the control of locomotion (1978) Annu. Rev. Neurosci., 1, pp. 61-81
  • Stent, G.S., Kristan, W.B., Friesen, W.O., Ort, C.A., Poon, M., Calabrese, R.L., Neuronal generation of the leech swimming movement. An oscillatory network of neurons driving a locomotory rhythm has been identified (1978) Science, 200, pp. 1348-1357
  • Stern-Tomlinson, W., Nusbaum, M.P., Perez, L.E., Kristan, W.B., A kinematic study of crawling behavior in the leech, Hirudo medicinalis (1986) J. Comp. Physiol. A, 158, pp. 593-603
  • Stuart, A.E., Physiological and morphological properties of motoneurones in the central nervous system of the leech (1970) J. Physiol., 209, pp. 627-646
  • Turrigiano, G.G., Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same (1999) Trends Neurosci., 22, pp. 221-227
  • Wadepuhl, M., Depression of excitatory motoneurones by a single neurone in the leech central nervous system (1989) J. Exp. Biol., 143, pp. 509-527
  • Yang, S.M., Vilarchao, M.E., Rela, L., Szczupak, L., Wide propagation of graded signals in nonspiking neurons (2013) J. Neurophysiol., 109, pp. 711-720

Citas:

---------- APA ----------
(2014) . Recurrent inhibition in motor systems, a comparative analysis. Journal of Physiology Paris, 108(2-3), 148-154.
http://dx.doi.org/10.1016/j.jphysparis.2014.05.004
---------- CHICAGO ----------
Szczupak, L. "Recurrent inhibition in motor systems, a comparative analysis" . Journal of Physiology Paris 108, no. 2-3 (2014) : 148-154.
http://dx.doi.org/10.1016/j.jphysparis.2014.05.004
---------- MLA ----------
Szczupak, L. "Recurrent inhibition in motor systems, a comparative analysis" . Journal of Physiology Paris, vol. 108, no. 2-3, 2014, pp. 148-154.
http://dx.doi.org/10.1016/j.jphysparis.2014.05.004
---------- VANCOUVER ----------
Szczupak, L. Recurrent inhibition in motor systems, a comparative analysis. J. Physiol. Paris. 2014;108(2-3):148-154.
http://dx.doi.org/10.1016/j.jphysparis.2014.05.004