Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Historically, arthropod behavior has been considered to be a collection of simple, automaton-like routines commanded by domain-specific brain modules working independently. Nowadays, it is evident that the extensive behavioral repertoire of these animals and its flexibility necessarily imply far more complex abilities than originally assumed. For example, even what was thought to be a straightforward behavior of crabs, the escape response to visual danger stimuli, proved to involve a number of sequential stages, each of which implying decisions made on the bases of stimulus and contextual information. Inspired in previous observations on how the stimulus trajectory can affect the escape response of crabs in the field, we investigated the escape response to images of objects approaching directly toward the crab (looming stimuli: LS) or moving parallel to it (translational stimuli: TS) in the laboratory. Computer simulations of moving objects were effective to elicit escapes. LS evoked escapes with higher probability and intensity (speed and distance of escape) than TS, but responses started later. In addition to the escape run, TS also evoked a defensive response of the animal with its claws. Repeated presentations of TS or LS were both capable of inducing habituation. Results are discussed in connection with the possibilities offered by crabs to investigate the neural bases of behaviors occurring in the natural environment. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli
Autor:Scarano, F.; Tomsic, D.
Filiación:Laboratorio de Neurobiología de la Memoria. Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
Palabras clave:Antipredator response; Defensive; Habituation; Stimulus trajectory; Visually guided behaviors; adult; animal behavior; animal experiment; Article; computer generated looming stimulus; computer simulation; crab; decision making; defense mechanism; escape behavior; evoked visual response; giant nerve cell; habituation; locomotion; male; Neohelice; nonhuman; predator avoidance; probability; quantitative analysis; simulator; stimulus response; task performance; translational visual danger stimulus; velocity; visual stimulation; animal; Brachyura; escape behavior; limb; motor activity; movement perception; photostimulation; physiology; predation; vision; Animals; Behavior, Animal; Brachyura; Computer Simulation; Escape Reaction; Extremities; Male; Motion Perception; Motor Activity; Photic Stimulation; Predatory Behavior; Visual Perception
Año:2014
Volumen:108
Número:2-3
Página de inicio:141
Página de fin:147
DOI: http://dx.doi.org/10.1016/j.jphysparis.2014.08.002
Título revista:Journal of Physiology Paris
Título revista abreviado:J. Physiol. Paris
ISSN:09284257
CODEN:JHYSE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09284257_v108_n2-3_p141_Scarano

Referencias:

  • Bachmann, S., Martinez, M.M., Feeding tactics of the american oystercatcher (Haematopus palliatus) on Mar Chiquita coastal lagoon, Argentina (1999) Ornitología Neotrop., 10, pp. 81-84
  • Berón de Astrada, M., Sztarker, J., Tomsic, D., Visual interneurons of the crab Chasmagnathus studied by intracellular recordings in vivo (2001) J. Comp. Physiol. A., 187, pp. 37-44
  • Berón de Astrada, M., Tuthill, J., Tomsic, D., Physiology and morphology of sustaining and dimming neurons of the crab Chasmagnathus granulatus (Brachyura: Grapsidae) (2009) J. Comp. Physiol., 195, pp. 791-798
  • Berón de Astrada, M., Medan, V., Tomsic, D., How visual space maps in the optic neuropils of a crab (2011) J. Comp. Neurol., 519, pp. 1631-1639
  • Berón de Astrada, M., Bengochea, M., Medan, V., Tomsic, D., Regionalization in the eye of the grapsid crab Neohelice granulata (=Chasmagnathus granulatus): variation of resolution and facet diameters (2012) J. Comp. Physiol. A., 198, pp. 173-180
  • Berón de Astrada, M., Bengochea, M., Sztarker, J., Delorenzi, A., Tomsic, D., Behaviorally related neural plasticity in the arthropod optic lobes (2013) Curr. Biol., 23, pp. 1389-1398
  • Borst, A., Neural circuits for elementary motion detection (2014) J. Neurogen., , Epub ahead of print PMID: 24605814
  • Borst, A., Egelhaaf, M., Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process (1990) Proc. Nat. Acad. Sci. USA, 87, pp. 9363-9367
  • Borst, A., Haag, J., Reiff, D.F., Fly motion vision (2010) Ann. Rev. Neurosci., 33, pp. 49-70
  • Cavanaugh, D.J., Geratowski, J.D., Wooltorton, J.R., Spaethling, J.M., Hector, C.E., Zheng, X., Johnson, E.C., Sehgal, A., Identification of acircadianoutput circuit for rest:activityrhythmsinDrosophila (2014) Cell, 157, pp. 689-701
  • Copello, S., Favero, M., Foraging ecology of Olrog's gull Larus atlanticus in Mar Chiquita lagoon (Buenos Aires, Argentina): are there age-related differences (2001) Bird Conserv. Int., 11, pp. 175-188
  • Cuntz, H., Forstner, F., Schnell, B., Ammer, G., Raghu, S.V., Borst, A., Preserving neural function under extreme scaling (2013) PLoS ONE, 8, p. e71540
  • Dick, P.C., Gray, J.R., Spatiotemporal stimulus properties modulate responses to trajectory changes in alocustlooming-sensitive pathway (2014) J. Neurophysiol., 111, pp. 1736-1745
  • Edwards, D.H., Yeh, S.R., Krasne, F.B., Neuronal coincidence detection by voltage-sensitive electrical synapses (1998) Proc. Nat. Acad. Sci. USA, 95, pp. 7145-7150
  • Egelhaaf, M., Borst, A., A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons (1993) J. Neurosci., 13, pp. 4563-4574
  • Fathala, M.V., Iribarren, L., Kunert, M.C., Maldonado, H., A field model of learning: 1. Short-term memory in the crab Chasmagnathus granulatus (2010) J. Comp. Physiol. A., 196, pp. 61-75
  • Fathala, M.V., Kunert, M.C., Maldonado, H., A field model of learning: 2. Long-term memory in the crab Chasmagnathus granulatus (2010) J. Comp. Physiol. A., 196, pp. 77-84
  • Fotowat, H., Harrison, R.R., Gabbiani, F., Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors (2011) Neuron, 69, pp. 147-158
  • Gaten, E., Huston, S.J., Dowse, H.B., Matheson, T., Solitaryandgregariouslocusts differ in circadian rhythmicity of a visual outputneuron (2012) J. Biol. Rhythms, 27, pp. 196-205
  • Glantz, R.M., Habituation of the motion detectors of the crayfish optic nerve: their relationship to the visually evoked defense reflex (1974) J. Neurobiol., 5, pp. 489-510
  • Gonzalez-Bellido, P.T., Peng, H., Yang, J., Georgopoulos, A.P., Olberg, R.M., Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction (2013) Proc. Nat. Acad. Sci. USA, 110, pp. 696-701
  • Hemmi, J., Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation (2005) Anim. Behav., 69, pp. 603-614
  • Hemmi, J., Predator avoidance in fiddler crabs: 2. The visual cues (2005) Anim. Behav., 69, pp. 615-625
  • Hemmi, J., Merkle, T., High stimulus specificity characterizes antipredator habituation under natural conditions (2009) Proc. R. Soc. B, 276, pp. 4381-4388
  • Hemmi, J.M., Pfeil, A., A multi-stage anti-predator response increases information on predation risk (2010) J. Exp. Biol., 213, pp. 1484-1489
  • Hemmi, J., Tomsic, D., The neuroethology of escape in crabs: from sensory ecology to neurons and back (2012) Curr. Opin. Neurobiol., 22, pp. 1-7
  • Herberholz, J., Marquart, G.D., Decision making and behavioral choice during predator avoidance (2012) Front. Neurosci., 6, p. 125
  • Herberholz, J., Issa, F.A., Edwards, D.H., Patterns of neural circuit activation and behavior during dominance hierarchy formation in freely behaving crayfish (2001) J. Neurosci., 21, pp. 2759-2767
  • Land, M., Layne, J., The visual control of behavior in fiddler crabs. I. Resolution, threshold and the role of the horizon (1995) J. Comp. Physiol. A., 177, pp. 81-90
  • Land, M., Layne, J., The visual control of behaviour in fiddler crabs. II. Tracking control systems in courtship and defense (1995) J. Comp. Physiol., 177, pp. 91-103
  • Layne, J., Wicklein, M., Dodge, F.A., Barlow, R.B., Prediction of maximum allowable retinal slip speed in the fiddler crab, Uca pugilator (1997) Biol. Bull., 193, pp. 202-203
  • Lima, S.M., Dill, L.M., Behavioral decisions made under the risk of predation: a review and prospectus (1990) Can. J. Zool., 68, pp. 619-640
  • Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., Liu, L., Distinctmemorytraces for two visual features in theDrosophila brain (2006) Nature, 439, pp. 551-556
  • McMillan, G.A., Gray, J.R., A looming-sensitive pathway responds to changes in the trajectory of object motion (2012) J. Neurophysiol., 108, pp. 1052-1068
  • Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J. Neurophysiol., 98, pp. 2414-2428
  • Menzel, R., Search of the Engram in the Honeybee Brain (2013), pp. 397-414. , Invertebrate Learning and Memory. In: Menzel, R., Benjamin, P.R. (Eds.), Handbook of Behavioral Neuroscience (Series Editor: Joe Huston, Düsseldorf, Germany). Published by Elsevier/Academic Press. Chapter 29; Nordström, K., Neural specializations for small target detection in insects (2012) Curr. Opin. Neurobiol., 22, pp. 272-278
  • Oliva, D., Mecanismos de detección visual y evitación de colisiones en un nuevo modelo experimental, el cangrejo Chasmagnathus granulatus (2010), http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_4678_Oliva.pdf, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires; Oliva, D., Tomsic, D., Visuo-motor transformations involved in the escape response to looming stimuli in the crab Neohelice (=Chasmagnathus) granulata (2012) J. Exp. Biol., 215, pp. 3488-3500
  • Oliva, D., Tomsic, D., Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice (2014) J. Neurophysiol., , Epub ahead of print
  • Oliva, D., Medan, V., Tomsic, D., Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae) (2007) J. Exp. Biol., 210, pp. 865-880
  • Raderschall, C.A., Magrath, R.D., Hemmi, J., Habituation under natural conditions: model predators are distinguished by approach direction (2011) J. Exp. Biol., 214, pp. 4209-4216
  • Rosner, R., Homberg, U., Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain (2013) J. Neurosci., 33, pp. 8122-8133
  • Smolka, J., Zeil, J., Hemmi, J.M., Natural visual cues eliciting predator avoidance in fiddler crabs (2011) Proc. R. Soc. B, 278, pp. 3584-3592
  • Sztarker, J., Tomsic, D., Neuronal correlates of the visually elicited escape response of the crab Chasmagnathus upon seasonal variations, stimuli changes and perceptual alterations (2008) J. Comp. Physiol. A., 194, pp. 587-596
  • Sztarker, J., Tomsic, D., Brain modularity in arthropods: Individual neurons that support "what" but not "where" memories (2011) J. Neurosci., 31, pp. 8175-8180
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) J. Comp. Neurol., 493, pp. 396-411
  • Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D., Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus (2009) J. Comp. Neurol., 513, pp. 129-150
  • Tomsic, D., Maldonado, H., Neurobiology of Learning and Memory of Crustaceans (2014) Crustacean Nervous Systems and their Control of Behavior, , Derby, C., Thiel, M. (Eds.), (third volume of a ten-volume set on The Natural History of Crustaceans). Oxford University Press, in press
  • Tomsic, D., Romano, A., A multidisciplinary approach to learning and memory in the crab Neohelice (Chasmagnathus) granulata (2013) Invertebrate Learning and Memory. Handbook of Behavioral Neuroscience, pp. 335-353. , Menzel, R., Benjamin, P.R. (Eds.), (Series Editor: Joe Huston, Düsseldorf, Germany). Published by Elsevier/Academic Press. Chapter 26
  • Tomsic, D., Berón de Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropod (2003) J. Neurosci., 23, pp. 8539-8546
  • Tomsic, D., Berón de Astrada, M., Sztarker, J., Maldonado, H., Behavioural and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus (2009) Neurobiol. Learn. Mem., 92, pp. 176-182
  • Yao, Z., Shafer, O.T., TheDrosophila circadianclock is a variably coupled network of multiple peptidergic units (2014) Science, 343, pp. 1516-1520
  • Yeh, S.R., Fricke, R.A., Edwards, D.H., The effect of social experience on serotonergic modulation of the escape circuit of crayfish (1996) Science, 271, pp. 366-369

Citas:

---------- APA ----------
Scarano, F. & Tomsic, D. (2014) . Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. Journal of Physiology Paris, 108(2-3), 141-147.
http://dx.doi.org/10.1016/j.jphysparis.2014.08.002
---------- CHICAGO ----------
Scarano, F., Tomsic, D. "Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli" . Journal of Physiology Paris 108, no. 2-3 (2014) : 141-147.
http://dx.doi.org/10.1016/j.jphysparis.2014.08.002
---------- MLA ----------
Scarano, F., Tomsic, D. "Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli" . Journal of Physiology Paris, vol. 108, no. 2-3, 2014, pp. 141-147.
http://dx.doi.org/10.1016/j.jphysparis.2014.08.002
---------- VANCOUVER ----------
Scarano, F., Tomsic, D. Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli. J. Physiol. Paris. 2014;108(2-3):141-147.
http://dx.doi.org/10.1016/j.jphysparis.2014.08.002