Artículo

Perullini, M.; Levinson, N.; Jobbágy, M.; Bilmes, S.A. "Microstructure and transport properties of biocompatible silica hydrogels" (2016) Journal of Sol-Gel Science and Technology. 77(2):437-445
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Abstract: Silica matrices are suitable for encapsulation of biomolecules and microorganisms to build bioactive functional materials. For many applications of these host–guest systems, the performance highly depends on the tuning of transport properties. Here we analyze the microstructure of silica hydrogels from small-angle X-ray scattering (SAXS) experiments and its correlation with their transport properties evaluated from the fitting of diffusional profiles of the cationic dye crystal violet (CV). We found a clear correlation between the microstructure parameters and the transport of CV over a wide range of synthesis conditions (SiO 2 total content from 3.6 to 9.0 % and pH of silica condensation from 4.5 to 7.5). At pH ~ 6, non-monotonic changes in transport properties can be attributed to the discontinuity observed in microscopic parameters, revealing the inherent complexity of the sol–gel transition. However, regardless of the pH of synthesis and for each set of samples with a fixed silica concentration, CV apparent diffusion coefficient (D app ) is inversely proportional to the parameter S (related to the silica/aqueous-solution interfacial area) derived from SAXS. These results indicate that macroscopic properties cannot be easily predicted from the pH of synthesis, in particular around neutral pH that is relevant for biotechnological applications. Nonetheless, the close correlation between D app and the microstructure parameters of the studied systems allows proposing a predictive value of any of these approaches toward the other. Graphical Abstract: [Figure not available: see fulltext.] © 2015, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Microstructure and transport properties of biocompatible silica hydrogels
Autor:Perullini, M.; Levinson, N.; Jobbágy, M.; Bilmes, S.A.
Filiación:INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires, C1428EHA, Argentina
Palabras clave:SAXS microstructure characterization; Silica hydrogels; TEOS alcohol-free route; Transport properties; Biocompatibility; Crystal microstructure; Dyes; Electron transport properties; Functional materials; Hydrogels; Microstructure; Sols; Surface diffusion; Synthesis (chemical); Transport properties; X ray scattering; Apparent diffusion coefficient; Biotechnological applications; Macroscopic properties; Micro-structure parameters; Microscopic parameter; Microstructure characterization; Silica concentrations; TEOS alcohol-free route; Silica
Año:2016
Volumen:77
Número:2
Página de inicio:437
Página de fin:445
DOI: http://dx.doi.org/10.1007/s10971-015-3872-4
Título revista:Journal of Sol-Gel Science and Technology
Título revista abreviado:J Sol Gel Sci Technol
ISSN:09280707
CODEN:JSGTE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09280707_v77_n2_p437_Perullini

Referencias:

  • Avnir, D., Lev, O., Livage, J., Recent bio-applications of sol–gel materials (2006) J Mater Chem, 16 (11), pp. 1013-1030
  • Livage, J., Coradin, T., Living cells in oxide glasses (2006) Rev Miner Geochem, 64 (1), pp. 315-332
  • Meunier, C.F., Dandoy, P., Su, B.-L., Encapsulation of cells within silica matrixes: towards a new advance in the conception of living hybrid materials (2010) J Colloid Interface Sci, 342, p. 211
  • Perullini, M., Orias, F., Durrieu, C., Jobbágy, M., Bilmes, S.A., Co-encapsulation of Daphnia magna and microalgae in silica matrices, a stepping stone toward a portable microcosm (2014) Biotechnol Rep, 4, pp. 147-150
  • Pannier, A., Soltmann, U., Soltmann, B., Altenburger, R., Schmitt-Jansen, M., Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays (2014) J Mater Chem B, 2, pp. 7896-7909
  • Ge, X., Eleftheriou, N.M., Dahoumane, S.A., Brennan, J.D., Sol–gel-derived materials for production of pin-printed reporter gene living-cell microarrays (2013) Anal Chem, 85, pp. 12108-12117
  • Brayner, R., Couté, A., Livage, J., Perrette, C., Sicard, C., Micro-algal biosensors (2013) Anal Bioanal Chem, 401 (2), pp. 581-597
  • Perullini, M., Ferro, Y., Durrieu, C., Jobbagy, M., Bilmes, S.A., Sol gel silica platforms for microalgae-based optical biosensors (2014) J Biotechnol, 179 (1), pp. 65-70
  • Perullini, M., Rivero, M.M., Jobbagy, M., Mentaberry, A., Blimes, S.A., Plant cell proliferation inside an inorganic host (2007) J Biotechnol, 127 (3), pp. 542-548
  • Nassif, N., Roux, C., Coradin, T., Bouvet, O.M.M., Livage, J., Bacteria quorum sensing in silica matrices (2004) J Mater Chem, 14 (14), pp. 2264-2268
  • Fiedler, D., Hager, U., Franke, H., Soltmann, U., Böttcher, H., Algae biocers: astaxanthin formation in sol–gel immobilised living microalgae (2007) J Mater Chem, 17 (3), pp. 261-266
  • Soler-Illia, G.J.A.A., Innocenzi, P., Mesoporous hybrid thin films: the physics and chemistry beneath (2006) Chem Eur J, 12, pp. 4478-4494
  • Otal, E.H., Angelomé, P.C., Bilmes, S.A., Soler-Illia, G.J.A.A., Functionalised mesoporous hybrid thin films as selective membranes (2006) Adv Mater, 18, pp. 934-938
  • Collard, X., Van der Schueren, B., Rooke, J., Aprile, C., Su, B., A comprehensive study of the reaction parameters involved in the synthesis of Silica thin films with well-ordered uni-directional mesopores (2013) J Colloid Interface Sci, 401, pp. 23-33
  • Perullini, M., Jobbágy, M., Moretti, M.B., Correa García, S., Bilmes, S.A., Optimizing silica encapsulation of living cells. In situ evaluation of cellular stress (2008) Chem Mater, 20, pp. 3015-3021
  • Kuncova, G., Podrazky, O., Ripp, S., Trögl, J., Sayler, G.S., Demnerova, K., Vankova, R., Monitoring of the viability of cells immobilized by sol–gel process (2004) J Sol-Gel Sci Technol, 31, pp. 1-8
  • Perchacz, M., Benes, H., Kobera, L., Walterova, Z., Influence of sol–gel conditions on the final structure of silica-based precursors (2015) J Sol-Gel Sci Technol, 75, pp. 649-663
  • Reichenauer, G., Thermal aging of silica gels in water (2004) J Non-Cryst Solids, 350, pp. 189-195
  • Coiffier, A., Coradin, T., Roux, C., Bouvet, O.M., Livage, J., Sol–gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes (2001) J Mater Chem, 11, pp. 2039-2044
  • Ferrer, M.L., Del Monte, F., Levy, D., A novel and simple alcohol-free sol-gel route for encapsulation of labile proteins (2002) Chem Mater, 14, pp. 3619-3621
  • Ferrer, M.L., Yuste, L., Rojo, F., Del Monte, F., Biocompatible sol–gel route for encapsulation of living bacteria in organically modified silica matrixes (2003) Chem Mater, 15, pp. 3614-3618
  • Himmel, B., Gerberb, T., Bürger, H., WAXS- and SAXS-investigations of structure formation in alcoholic SiO2 solutions (1990) J Non-Cryst Solids, 119, pp. 1-13
  • Mandelbrot, B.B., (1983) The fractal geometry of nature, , Freeman, San Francisco
  • Perullini, M., Jobbagy, M., Bilmes, S.A., Torriani, I.L., Candal, R., Effect of synthesis conditions on the microstructure of TEOS derived silica hydrogels synthesized by the alcohol-free sol–gel route (2011) J Sol-Gel Sci Technol, 59 (1), pp. 174-180
  • Tantemsapya, N., Meegoda, J.N., Estimation of diffusion coefficient of chromium in colloidal silica using digital photography (2004) Environ Sci Technol, 38, pp. 3950-3957
  • Ray, E., Bunton, P., Pojman, J.A., Determination of the diffusion coefficient between corn syrup and distilled water using a digital camera (2007) Am J Phys, 75, pp. 903-906
  • Perullini, M., Jobbágy, M., Japas, M.L., Bilmes, S.A., Simultaneous determination of diffusion and adsorption of dyes in silica hydrogels (2014) J Colloid Interface Sci, 425, pp. 91-95
  • Schmidt, P.W., Höhr, A., Neumann, H.-B., Kaiser, H., Avnir, D., Lin, J.S., Small angle X-ray scattering study of the fractal morphology of porous silicas (1989) J Chem Phys, 90 (9), pp. 5016-5023
  • http://rsb.info.nih.gov/ij/download.html; Crank, J., (1975) The mathematics of diffusion, , Clarendon Press, Oxford
  • Cavalcanti, L.P., Torriani, I.L., Plivelic, T.S., Oliveira, C.L.P., Kellermann, G., Neuenschwander, R., (2004) Rev Sci Instrum, 75, p. 4541
  • Schaefer, D.W., Keefer, K.D., Fractal geometry of sílica condensation polymers (1984) Phys Rev Lett, 53 (14), pp. 1383-1386
  • Avnir, D., Biham, O., Lidar, D., Malcai, O., Is the geometry of nature fractal? (1998) Science, 279, pp. 39-40
  • Sorensen, C.M., Wang, G.M., Size distribution effect on the power law regime of the structure factor of fractal aggregates (1999) Phys Rev E, 60 (6), pp. 7143-7148
  • Vinogradova, E., Moreno, A., Lara, V.H., Bosch, P., Multi-fractal imaging and structural investigation of silica hydrogels and aerogels (2003) Silicon Chem, 2, pp. 247-254
  • Ruthven, D.M., Sorption kinetics for diffusion-controlled systems with a strongly concentration-dependent diffusivity (2004) Chem Eng Sci, 59, pp. 4531-4545
  • Ruthven, D.M., (1984) Principles of adsorption and adsorption processes, , Wiley, New York
  • Alexander, F., Poots, V.J.P., McKay, G., Adsorption kinetics and diffusional mass transfer processes during colour removal from effluents using silica (1978) Ing Eng Chem Process Des Dev, 17 (4), pp. 406-410
  • Perullini, M., Calcabrini, M., Jobbágy, M., Bilmes, S.A., Alginate/porous silica matrices for the encapsulation of living organisms: tunable properties for biosensors, modular bioreactors, and bioremediation devices (2015) Mesoporous Biomater, 2, pp. 3-12
  • Perullini, M., Amoura, M., Roux, C., Coradin, T., Livage, J., Japas, M.L., Jobbagy, M., Bilmes, S.A., Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors (2011) J Mater Chem, 21, p. 4546

Citas:

---------- APA ----------
Perullini, M., Levinson, N., Jobbágy, M. & Bilmes, S.A. (2016) . Microstructure and transport properties of biocompatible silica hydrogels. Journal of Sol-Gel Science and Technology, 77(2), 437-445.
http://dx.doi.org/10.1007/s10971-015-3872-4
---------- CHICAGO ----------
Perullini, M., Levinson, N., Jobbágy, M., Bilmes, S.A. "Microstructure and transport properties of biocompatible silica hydrogels" . Journal of Sol-Gel Science and Technology 77, no. 2 (2016) : 437-445.
http://dx.doi.org/10.1007/s10971-015-3872-4
---------- MLA ----------
Perullini, M., Levinson, N., Jobbágy, M., Bilmes, S.A. "Microstructure and transport properties of biocompatible silica hydrogels" . Journal of Sol-Gel Science and Technology, vol. 77, no. 2, 2016, pp. 437-445.
http://dx.doi.org/10.1007/s10971-015-3872-4
---------- VANCOUVER ----------
Perullini, M., Levinson, N., Jobbágy, M., Bilmes, S.A. Microstructure and transport properties of biocompatible silica hydrogels. J Sol Gel Sci Technol. 2016;77(2):437-445.
http://dx.doi.org/10.1007/s10971-015-3872-4