Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The objective of this work is to test the performance of new synthetic polydimethylsiloxane (PDMS)-based bed particles acting as carriers for bacteria biofilms. The particles obtained have a highly interconnected porous structure which offers a large surface adsorption area to the bacteria. In addition, PDMS materials can be cross-linked by copolymerization with other polymers. In the present work we have chosen two hydrophilic polymers: xanthan gum polysaccharide and tetraethoxysilane (TEOS). This versatile composition helps to modulate the interfacial hydrophobic/hydrophilic balance at the particle surface level and the roughness topology and pore size distribution, as revealed by scanning electron microscopy. Biofilm formation of a consortium isolated from a tannery effluent enriched in Sulphate Reducing Bacteria (SRB), and pure Acidithiobacillus ferrooxidans (AF) strains were assayed in three different bed particles synthesized with pure PDMS, PDMS-xanthan gum and PDMS-TEOS hybrids. Bacterial viability assays using confocal laser scanning fluorescence microscopy indicate that inclusion of hydrophilic groups on particle's surface significantly improves both cell adhesion and viability. © 2010 Elsevier B.V.

Registro:

Documento: Artículo
Título:PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition
Autor:Fernández, M.R.; Casabona, M.G.; Anupama, V.N.; Krishnakumar, B.; Curutchet, G.A.; Bernik, D.L.
Filiación:Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Argentina
Environmental Technology, National Institute for Interdisciplinary Science, Technology (NIST, CSIR-India), Thiruvananthapuram 695019, India
Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Provincia de Buenos Aires, Argentina
Palabras clave:Bed material; Biofilm; CSLM; PDMS; SEM; Acidithiobacillus ferrooxidans; Bacterial biofilm; Bacterial viability; Bed materials; Bed particles; Biofilm formation; Confocal laser scanning; CSLM; Hydrophilic groups; Hydrophilic polymers; Interconnected porous structure; Particle surface; PDMS; Polydimethylsiloxane PDMS; Polymer composition; Porous particle; SEM; Sulphate-reducing bacteria; Surface adsorption; Tannery effluent; Tetraethoxysilanes; Xanthan Gum; Adhesion; Adsorption; Bacteriology; Biofilms; Biofilters; Cell adhesion; Cell immobilization; Fluorescence microscopy; Hydrophilicity; Microchannels; Polymers; Pore size; Porous materials; Scanning electron microscopy; Silicones; Surfaces; dimeticone; tetraethoxysilane; xanthan; Acidithiobacillus ferrooxidans; article; bacterial membrane; bacterial strain; bacterial viability; bacterium adherence; bacterium culture; biofilm; controlled study; hydrophilicity; hydrophobicity; immobilized cell; membrane formation; membrane permeability; nonhuman; polymerization; porosity; priority journal; scanning electron microscopy; sulfate reducing bacterium; surface property; Acidithiobacillus; Bacteria; Bacterial Adhesion; Biofilms; Cells, Immobilized; Dimethylpolysiloxanes; Hydrophobic and Hydrophilic Interactions; Microscopy, Confocal; Microscopy, Electron, Scanning; Microscopy, Fluorescence; Particle Size; Polysaccharides, Bacterial; Porosity; Silanes; Sulfates; Surface Properties; Acidithiobacillus ferrooxidans; Bacteria (microorganisms)
Año:2010
Volumen:81
Número:1
Página de inicio:289
Página de fin:296
DOI: http://dx.doi.org/10.1016/j.colsurfb.2010.07.018
Título revista:Colloids and Surfaces B: Biointerfaces
Título revista abreviado:Colloids Surf. B Biointerfaces
ISSN:09277765
CODEN:CSBBE
CAS:dimeticone, 32028-95-8, 68248-27-1, 9004-73-3, 9006-65-9; xanthan, 11138-66-2; Dimethylpolysiloxanes; Polysaccharides, Bacterial; Silanes; Sulfates; baysilon, 63148-62-9; tetraethoxysilane, 78-10-4; xanthan gum, 11138-66-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09277765_v81_n1_p289_Fernandez

Referencias:

  • Michel, C., Jean, M., Coulon, S., Dictor, M.C., Delorm, F., Morin, D., Garrido, F., (2007) Appl. Microbiol. Biotechnol., 77, pp. 457-467
  • Wang, Y., Fan, Y., Ji-Dong Gu, (2004) Int. Biodeterior. Biodegr., 53, pp. 93-101
  • Strathmann, M., Griebe, T., Fleming, H.C., (2000) Appl. Microbiol. Biotechnol., 54, pp. 231-237
  • Donlan, R.M., Costerton, J.W., (2002) Clin. Microbiol. Rev., 15, pp. 167-193
  • Krishnan, S., Weinman, C.J., Ober, C.K., (2008) J. Mater. Chem., 18, pp. 3405-3413
  • Tirrell, M., Kokkoli, E., Biesalski, M., (2002) Surf. Sci., 500, pp. 61-83
  • Yun, M., Yeon, K., Park, J.S., Lee, C.H., Chun, J., Lim, D.J., (2006) Water Res., 40, pp. 45-52
  • Pasmore, M., Todd, P.W., Pfiefer, B., Rhodes, M., Bowman, C.N., (2002) Biofouling, 18, pp. 65-71
  • Wagner, M., Ivleva, N.P., Haisch, C., Niessner, R., Horn, H., (2009) Water Res., 43, pp. 63-76
  • Zita, A., Hermansson, M., (1997) Appl. Environ. Microbiol., 63, pp. 1168-1170
  • Donlan, R.M., (2002) Emerg. Infect. Dis., 8, pp. 881-890
  • Hood, S.K., Zottola, E.A., (1995) Food Control, 6, pp. 9-18
  • Parkar, S.G., Flint, S.H., Palmer, J.S., Brooks, J.D., (2001) J. Appl. Microbiol., 90, pp. 901-908
  • Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M.N., Hebraud, M., (2002) Appl. Environ. Microbiol., 68, pp. 728-737
  • Lackner, S., Holmberg, M., Terada, A., Kingshott, P., Smets, B.F., (2009) Water Res., 43, pp. 3469-3478
  • Krishnan, S., Ayothi, R., Hexemer, A., Finlay, J.A., Sohn, K.E., Perry, R., Ober, C.K., Fischer, D.A., (2006) Langmuir, 22, pp. 5075-5086
  • Sohn, E.H., Kim, J., Kim, B.G., Kang, J.I., Chung, J.S., Ahn, J., Yoon, J., Lee, J.C., (2010) Colloids Surf. B: Biointerfaces, 77, pp. 191-199
  • Satriano, C., Messina, G.M.L., Carnazza, S., Guglielmino, S., Marletta, G., (2006) Mater. Sci. Eng. C, 26, pp. 942-946
  • Bertin, L., Majone, M., Di Gioia, D., Fava, F., (2001) J. Biotechnol., 87, pp. 161-177
  • Mundargi, R., Patil, S.A., Aminabhavi, T.M., (2007) Carbohydr. Polym., 69. , 130 141
  • Mandala, I.G., Bayas, E., (2004) Food Hydrocolloids, 18, pp. 191-201
  • Makamba, H., Kim, J.H., Lim, K., Park, N., Hahn, J.H., (2003) Electrophoresis, 24, pp. 3607-3619
  • Liu, J.K., Lee, M.L., (2006) Electrophoresis, 27, pp. 3533-3546
  • Vilkner, T., Janasek, D., Manz, A., (2004) Anal. Chem., 76, pp. 3373-3385
  • Duffy, D.C., McDonald, J.C., Schueller, O.J.A., Whitesides, G.M., (1998) Anal. Chem., 70, pp. 4974-4984
  • Xiao, D.Q., Zhang, H., Wirth, M., (2002) Langmuir, 18, pp. 9971-9976
  • Sui, G.D., Wang, J.Y., Lee, C.C., Lu, W.X., Lee, S.P., Leyton, J.V., Wu, A.M., Tseng, H.R., (2006) Anal. Chem., 78, pp. 5543-5551
  • Hellmich, W., Regtmeier, J., Duong, T.T., Ros, R., Anselmetti, D., Ros, A., (2005) Langmuir, 21, pp. 7551-7557
  • Delamarche, E., Geissler, M., Bernard, A., Wolf, H., Michel, B., Hilborn, J., Donzel, C., (2001) Adv. Mater., 13, pp. 1164-1167
  • Barbier, V., Tatoulian, M., Li, H., Arefi-Khonsari, F., Ajdari, A., Tabeling, P., (2006) Langmuir, 22, pp. 5230-5232
  • He, Q.G., Liu, Z.C., Xiao, P.F., Liang, R.Q., He, N.Y., Lu, Z.H., (2003) Langmuir, 19, pp. 6982-6986
  • Hu, S.W., Ren, X.Q., Bachman, M., Sims, C.E., Li, G.P., Allbritton, N., (2002) Anal. Chem., 74, pp. 4117-4123
  • Hu, S.W., Ren, X.Q., Bachman, M., Sims, C.E., Li, G.P., Allbritton, N.L., (2004) Langmuir, 20, pp. 5569-5574
  • Shin, Y.S., Cho, K., Lim, S.H., Chung, S., Park, S.J., Chung, C., Han, D.C., Chang, J.K., (2003) J. Micromech. Microeng., 13, pp. 768-774
  • Pederson, K., (1990) Water Res., 24, pp. 239-243
  • Chang, I., Gilbert, E.S., Eliashberg, N., Keasling, J.D., (2003) Microbiology, 149, pp. 2859-2871
  • Hunt, S.M., Werner, E.M., Huang, B., Hamilton, M.A., Stewart, P.S., (2004) Appl. Environ. Microbiol., 70, pp. 7418-7425

Citas:

---------- APA ----------
Fernández, M.R., Casabona, M.G., Anupama, V.N., Krishnakumar, B., Curutchet, G.A. & Bernik, D.L. (2010) . PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition. Colloids and Surfaces B: Biointerfaces, 81(1), 289-296.
http://dx.doi.org/10.1016/j.colsurfb.2010.07.018
---------- CHICAGO ----------
Fernández, M.R., Casabona, M.G., Anupama, V.N., Krishnakumar, B., Curutchet, G.A., Bernik, D.L. "PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition" . Colloids and Surfaces B: Biointerfaces 81, no. 1 (2010) : 289-296.
http://dx.doi.org/10.1016/j.colsurfb.2010.07.018
---------- MLA ----------
Fernández, M.R., Casabona, M.G., Anupama, V.N., Krishnakumar, B., Curutchet, G.A., Bernik, D.L. "PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition" . Colloids and Surfaces B: Biointerfaces, vol. 81, no. 1, 2010, pp. 289-296.
http://dx.doi.org/10.1016/j.colsurfb.2010.07.018
---------- VANCOUVER ----------
Fernández, M.R., Casabona, M.G., Anupama, V.N., Krishnakumar, B., Curutchet, G.A., Bernik, D.L. PDMS-based porous particles as support beds for cell immobilization: Bacterial biofilm formation as a function of porosity and polymer composition. Colloids Surf. B Biointerfaces. 2010;81(1):289-296.
http://dx.doi.org/10.1016/j.colsurfb.2010.07.018