Albano, J.M.R.; Ribeiro, L.N.D.M.; Couto, V.M.; Barbosa Messias, M.; Rodrigues da Silva, G.H.; Breitkreitz, M.C.; de Paula, E.; Pickholz, M. "Rational design of polymer-lipid nanoparticles for docetaxel delivery" (2019) Colloids and Surfaces B: Biointerfaces. 175:56-64
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


In this work, a stable nanocarrier for the anti-cancer drug docetaxel was rational designed. The nanocarrier was developed based on the solid lipid nanoparticle preparation process aiming to minimize the total amount of excipients used in the final formulations. A particular interest was put on the effects of the polymers in the final composition. In this direction, two poloxoamers -Pluronic F127 and F68- were selected. Some poloxamers are well known to be inhibitors of the P-glycoprotein efflux pump. Additionally, their poly-ethylene-oxide blocks can help them to escape the immune system, making the poloxamers appealing to be present in a nanoparticle designed for the treatment of cancer. Within this context, a factorial experiment design was used to achieve the most suitable formulations, and also to identify the effects of each component on the final (optimized) systems. Two final formulations were chosen with sizes < 250 nm and PDI < 0.2. Then, using dynamic light scattering and nanotracking techniques, the stability of the formulations was assessed during six months. Structural studies were carried on trough different techniques: DSC, x-ray diffraction, FTIR-AR and Molecular Dynamics. The encapsulation efficiency of the anticancer drug docetaxel (> 90%) and its release dynamics from formulations were measured, showing that the polymer-lipid nanoparticle is suitable as a drug delivery system for the treatment of cancer. © 2018 Elsevier B.V.


Documento: Artículo
Título:Rational design of polymer-lipid nanoparticles for docetaxel delivery
Autor:Albano, J.M.R.; Ribeiro, L.N.D.M.; Couto, V.M.; Barbosa Messias, M.; Rodrigues da Silva, G.H.; Breitkreitz, M.C.; de Paula, E.; Pickholz, M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Física de Buenos Aires (IFIBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
Biochemistry and Tissue Biology Department, Institute of Biology, University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
Institute of Chemistry, Universityof Campinas - UNICAMP, PO Box 6154, Campinas, SP 13083-970, Brazil
Palabras clave:Cetyl palmitate; Docetaxel; Drug delivery system; Nanocarrier; Poloxamer; Rational design; Diseases; Ethylene; Glycoproteins; Light scattering; Molecular dynamics; Nanoparticles; Palmitic acid; Polymers; Targeted drug delivery; Cetyl palmitate; Docetaxel; Drug delivery system; Nanocarriers; Poloxamer; Rational design; Controlled drug delivery; docetaxel; glycoprotein P inhibitor; nanocarrier; poloxamer; polyethylene; polymer; solid lipid nanoparticle; analysis of variance; Article; body distribution; centrifugation; chemical phenomena; clinical assessment; differential scanning calorimetry; dispersity; drug delivery system; drug determination; drug formulation; drug penetration; drug retention; drug solubility; factor analysis; feasibility study; Fourier transform infrared spectroscopy; high performance liquid chromatography; hydrodynamics; immune system; kinetics; melting point; molecular dynamics; nanoencapsulation; particle size; photon correlation spectroscopy; physical chemistry; priority journal; rational emotive behavior therapy; simulation; slow release formulation; structure analysis; toxicity testing; transmission electron microscopy; ultrafiltration; X ray diffraction; zeta potential
Página de inicio:56
Página de fin:64
Título revista:Colloids and Surfaces B: Biointerfaces
Título revista abreviado:Colloids Surf. B Biointerfaces
CAS:docetaxel, 114977-28-5; poloxamer, 9003-11-6; polyethylene, 9002-88-4


  • Miller, K.D., Siegel, R.L., Lin, C.C., Cancer treatment and survivorship statistics, 2016 (2016) CA Cancer J. Clin., 66, pp. 271-289
  • Saloustros, E., Georgoulias, V., Docetaxel in the treatment of advanced non-small-cell lung cancer (2008) Expert Rev. Anticancer Ther., 8, pp. 1207-1222
  • Saloustros, E., Mavroudis, D., Georgoulias, V., Paclitaxel and docetaxel in the treatment of breast cancer (2008) Expert Opin. Pharmacother., 9, pp. 2603-2616
  • Montero, A., Fossella, F., Hortobagyi, G., Valero, V., Docetaxel for treatment of solid tumours: a systematic review of clinical data (2005) Lancet Oncol., 6, pp. 229-239
  • Berchem, G.J., Bosseler, M., Mine, N., Avalosse, B., Nanomolar range docetaxel treatment sensitizes MCF-7 cells to chemotherapy induced apoptosis, induces G2M arrest and phosphorylates bcl-2 (1999) Anticancer Res., 19, pp. 535-540
  • Hernández-Vargas, H., Palacios, J., Moreno-Bueno, G., Molecular profiling of docetaxel cytotoxicity in breast cancer cells: uncoupling of aberrant mitosis and apoptosis (2007) Oncogene, 26, pp. 2902-2913
  • Huang, W., Zhang, J., Dorn, H.C., Zhang, C., Assembly of bio-nanoparticles for double controlled drug release (2013) PLoS One, 8
  • Kuppens, I., Current state of the art of new tubulin inhibitors in the clinic (2006) Curr. Clin. Pharmacol., 1, pp. 57-70
  • Engels, F.K., Mathot, R.A.A., Verweij, J., Alternative drug formulations of docetaxel: a review (2007) Anticancer Drugs, 18, pp. 95-103
  • Katsumata, N., Docetaxel: an alternative taxane in ovarian cancer (2003) Br. J. Cancer, 89, pp. S9-S15
  • Baker, J., Ajani, J., Scotté, F., Docetaxel-related side effects and their management (2009) Eur. J. Oncol. Nurs., 13, pp. 49-59
  • Agrawal, R., Shanavas, A., Yadav, S., Polyelectrolyte coated polymeric nanoparticles for controlled release of docetaxel (2012) J. Biomed. Nanotechnol., 8, pp. 19-28
  • Saremi, S., Dinarvand, R., Kebriaeezadeh, A., Enhanced oral delivery of docetaxel using thiolated chitosan nanoparticles: preparation, in vitro and in vivo studies (2013) Biomed Res. Int., 2013
  • Rafiei, P., Haddadi, A., Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile (2017) Int. J. Nanomed., 12, pp. 935-947
  • Schwarz, C., Mehnert, W., Lucks, J.S., Müller, R.H., Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization (1994) J. Control. Release, 30, pp. 83-96
  • Umeyor, E.C., Kenechukwu, F.C., Ogbonna, J.D., Preparation of novel solid lipid microparticles loaded with gentamicin and its evaluation in vitro and in vivo (2012) J. Microencapsul., 29, pp. 296-307
  • Yuan, Q., Han, J., Cong, W., Docetaxel-loaded solid lipid nanoparticles suppress breast cancer cells growth with reduced myelosuppression toxicity (2014) Int. J. Nanomed., 9, pp. 4829-4846
  • Zheng, D., Li, D., Lu, X., Feng, Z., Enhanced antitumor efficiency of docetaxel-loaded nanoparticles in a human ovarian xenograft model with lower systemic toxicities by intratumoral delivery (2010) Oncol. Rep., 23, pp. 717-724
  • Cacicedo, M.L., Islan, G.A., León, I.E., Bacterial cellulose hydrogel loaded with lipid nanoparticles for localized cancer treatment (2018) Colloids Surf. B Biointerfaces, 170, pp. 596-608
  • Azzi, S., Hebda, J.K., Gavard, J., Vascular permeability and drug delivery in cancers (2013) Front. Oncol., 3, p. 211
  • Steichen, S.D., Caldorera-Moore, M., Peppas, N.A., A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics (2013) Eur. J. Pharm. Sci., 48, pp. 416-427
  • Maeda, H., Nakamura, H., Fang, J., The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo (2013) Adv. Drug Deliv. Rev., 65, pp. 71-79
  • Kobayashi, H., Watanabe, R., Choyke, P.L., Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? (2014) Theranostics, 4, pp. 81-89
  • Weyhers, H., Ehlers, S., Hahn, H., Solid lipid nanoparticles (SLN)–effects of lipid composition on in vitro degradation and in vivo toxicity (2006) Pharmazie, 61, pp. 539-544
  • Pitto-Barry, A., Barry, N.P.E., Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances (2014) Polym. Chem., 5, pp. 3291-3297
  • Wood, I., Martini, M.F., Albano, J.M.R., Coarse grained study of pluronic F127: comparison with shorter co-polymers in its interaction with lipid bilayers and self-aggregation in water (2016) J. Mol. Struct., 1109, pp. 106-113
  • Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y., Pluronic® block copolymers for overcoming drug resistance in cancer (2002) Adv. Drug Deliv. Rev., 54, pp. 759-779
  • Sharma, A.K., Zhang, L., Li, S., Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant (2008) J. Control. Release, 131, pp. 220-227
  • Venne, A., Li, S., Mandeville, R., Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug- resistant cells (1996) Cancer Res., 56, pp. 3626-3629
  • Lage, H., ABC-transporters: implications on drug resistance from microorganisms to human cancers (2003) Int. J. Antimicrob. Agents, 22, pp. 188-199
  • Chen, Z., Shi, T., Zhang, L., Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade (2016) Cancer Lett., 370, pp. 153-164
  • Batrakova, E.V., Li, S., Vinogradov, S.V., Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization (2001) J. Pharmacol. Exp. Ther., 299, pp. 483-493
  • Song, C.K., Balakrishnan, P., Shim, C.-K., Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells (2011) J. Microencapsul., 28, pp. 575-581
  • Wei, Z., Yuan, S., Hao, J., Fang, X., Mechanism of inhibition of P-glycoprotein mediated efflux by Pluronic P123/F127 block copolymers: relationship between copolymer concentration and inhibitory activity (2013) Eur. J. Pharm. Biopharm., 83, pp. 266-274
  • Alakhova, D.Y., Kabanov, A.V., Pluronics and MDR reversal: an update (2014) Mol. Pharm., 11, pp. 2566-2578
  • Jain, D., Athawale, R., Bajaj, A., Studies on stabilization mechanism and stealth effect of poloxamer 188 onto PLGA nanoparticles (2013) Colloids Surf. B Biointerfaces, 109, pp. 59-67
  • Mayol, L., Serri, C., Menale, C., Curcumin loaded PLGA–poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells (2015) Eur. J. Pharm. Biopharm., 93, pp. 37-45
  • Li, S.-D., Huang, L., Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting (2010) J. Control. Release, 145, pp. 178-181
  • Gref, R., Lück, M., Quellec, P., ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption (2000) Colloids Surf. B Biointerfaces, 18, pp. 301-313
  • Loureiro, A., Noro, J., Abreu, A.S., Absence of albumin improves in vitro cellular uptake and disruption of poloxamer 407-Based nanoparticles inside Cancer cells (2018) Mol. Pharm., 15, pp. 527-535
  • Moraes, C.M., Paula, E., de, Rosa, A.H., Fraceto, L.F., Validação de metodologia analítica por cromatografia líquida de alta eficiência para quantificação de bupivacaína (S75-R25) em nanoesferas de poli(lactí deo-co-glicolí deo) (2008) Quim. Nova, 31, pp. 2152-2155
  • Rodrigues da Silva, G.H., Ribeiro, L.N.M., Mitsutake, H., Optimised NLC: a nanotechnological approach to improve the anaesthetic effect of bupivacaine (2017) Int. J. Pharm., 529, pp. 253-263
  • Nahak, P., Karmakar, G., Roy, B., Physicochemical studies on local anaesthetic loaded second generation nanolipid carriers (2015) RSC Adv., 5, pp. 26061-26070
  • Chen, H., Wang, Y., Zhai, Y., Development of a ropivacaine-loaded nanostructured lipid carrier formulation for transdermal delivery (2015) Colloids Surf. A Physicochem. Eng. Asp., 465, pp. 130-136
  • Marrink, S.J., Risselada, H.J., Yefimov, S., The MARTINI force field: coarse grained model for biomolecular simulations (2007) J. Phys. Chem. B, 111, pp. 7812-7824
  • Yesylevskyy, S.O., Schäfer, L.V., Sengupta, D., Marrink, S.J., Polarizable water model for the coarse-grained MARTINI force field (2010) PLoS Comput. Biol., 6, pp. 1-17
  • Namgung, R., Mi Lee, Y., Kim, J., Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy (2014) Nat. Commun., 5
  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Molecular dynamics with coupling to an external bath (1984) J. Chem. Phys., 81, pp. 3684-3690
  • Berendsen, H.J.C., van der Spoel, D., van Drunen, R., GROMACS: a message passing parallel molecular dynamics implementation (1995) Comp. Phys. Comm., 91, pp. 43-56
  • Müller, R.H., Mäder, K., Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art (2000) Eur. J. Pharm. Biopharm., 50, pp. 161-177
  • Ribeiro, L.N.M., Franz-Montan, M., Breitkreitz, M.C., Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry (2016) Eur. J. Pharm. Sci., 93, pp. 192-202
  • Ribeiro, L.N.M., Breitkreitz, M.C., Guilherme, V.A., Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies (2017) Eur. J. Pharm. Sci., 106, pp. 102-112
  • Rodenak-Kladniew, B., Islan, G.A., de Bravo, M.G., Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy (2017) Colloids Surf. B Biointerfaces, 154, pp. 123-132
  • Yan, F., Zhang, C., Zheng, Y., The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity (2010) Nanomed. Nanotechnol. Biol. Med., 6, pp. 170-178
  • Jin, M., Piao, S., Jin, T., Improved anti-tumor efficiency against prostate cancer by docetaxel-loaded PEG-PCL micelles (2014) J. Huazhong Univ. Sci. Technol. Med. Sci., 34, pp. 66-75
  • Jensen, O.A., Prause, J.U., Laursen, H., Shrinkage in preparatory steps for SEM. A study on rabbit corneal endothelium (1981) Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol., 215, pp. 233-242
  • Feng, L., Mumper, R.J., A critical review of lipid-based nanoparticles for taxane delivery (2013) Cancer Lett., 334, pp. 157-175
  • Balkwill, F.R., Capasso, M., Hagemann, T., The tumor microenvironment at a glance (2012) J. Cell. Sci., 125, pp. 5591-5596
  • Martins, S., Costa-Lima, S., Carneiro, T., Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway (2012) Int. J. Pharm., 430, pp. 216-227
  • Kolašinac, N., Kachrimanis, K., Homšek, I., Solubility enhancement of desloratadine by solid dispersion in poloxamers (2012) Int. J. Pharm., 436, pp. 161-170
  • Singh, H., Sharma, R., Joshi, M., Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofibers (2015) Artif. Cells Nanomed. Biotechnol., 43, pp. 263-269
  • Zeng, X., Tao, W., Mei, L., Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer (2013) Biomaterials, 34, pp. 6058-6067
  • Zaske, L., Perrin, M.-A., Daiguebonne, C., Guillou, O., Docetaxel (Taxotere® trihydrate) forms: crystal structure determination from XRPD & XRSCD data (2004) Mater. Sci. Forum., pp. 443-444. , 411–0. doi: 10.4028/
  • Saupe, A., Gordon, K.C., Rades, T., Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy (2006) Int. J. Pharm., 314, pp. 56-62
  • Fan, X., Chen, J., Shen, Q., Docetaxel–nicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery (2013) Int. J. Pharm., 458, pp. 296-304
  • Albano, J.M.R., de, P.E., Pickholz, M., molecular dynamics simulations to study drug delivery systems (2018) Mol. Dyn. InTech.
  • Wood, I., Albano, J.M.R., Filho, P.L.O., A sumatriptan coarse-grained model to explore different environments: interplay with experimental techniques (2018) Eur. Biophys. J.
  • Pazdur, R., Kudelka, A.P., Kavanagh, J.J., The taxoids: paclitaxel (Taxol) and docetaxel (Taxotere) (1993) Cancer Treat. Rev., 19, pp. 351-386
  • Baek, J.-S., Cho, C.-W., Comparison of solid lipid nanoparticles for encapsulating paclitaxel or docetaxel (2015) J. Pharm. Investig., 45, pp. 625-631


---------- APA ----------
Albano, J.M.R., Ribeiro, L.N.D.M., Couto, V.M., Barbosa Messias, M., Rodrigues da Silva, G.H., Breitkreitz, M.C., de Paula, E.,..., Pickholz, M. (2019) . Rational design of polymer-lipid nanoparticles for docetaxel delivery. Colloids and Surfaces B: Biointerfaces, 175, 56-64.
---------- CHICAGO ----------
Albano, J.M.R., Ribeiro, L.N.D.M., Couto, V.M., Barbosa Messias, M., Rodrigues da Silva, G.H., Breitkreitz, M.C., et al. "Rational design of polymer-lipid nanoparticles for docetaxel delivery" . Colloids and Surfaces B: Biointerfaces 175 (2019) : 56-64.
---------- MLA ----------
Albano, J.M.R., Ribeiro, L.N.D.M., Couto, V.M., Barbosa Messias, M., Rodrigues da Silva, G.H., Breitkreitz, M.C., et al. "Rational design of polymer-lipid nanoparticles for docetaxel delivery" . Colloids and Surfaces B: Biointerfaces, vol. 175, 2019, pp. 56-64.
---------- VANCOUVER ----------
Albano, J.M.R., Ribeiro, L.N.D.M., Couto, V.M., Barbosa Messias, M., Rodrigues da Silva, G.H., Breitkreitz, M.C., et al. Rational design of polymer-lipid nanoparticles for docetaxel delivery. Colloids Surf. B Biointerfaces. 2019;175:56-64.