Artículo

Silva, C.P.; Martínez, J.H.; Martínez, K.D.; Farías, M.E.; Leskow, F.C.; Pérez, O.E. "Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells" (2018) Colloids and Surfaces A: Physicochemical and Engineering Aspects. 537:425-434
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The objective of this contribution was to propose a model that would explain the nanocomplexes formation between Human Recombinant Insulin (I) and a polydisperse Chitosan (CS). Such an objective implied exploring I and CS concentration conditions that allowed the formation of complexes with defined and reproducible submicronic dimensions. I-CS complexes were obtained by mixing I and CS solutions at pH 2 and then increasing the pH up to 6 promoting electrostatic interactions between them. Colloidal stages of I and I-CS nano-complexes formation were characterized by dynamic light scattering (DLS), ζ-potential, solutions flow behavior and absorbance measurements. 1·10−2%, w/w, of CS allowed covering completely the surface protein aggregates constituting core–shell nano-structures of 200 nm, with a ζ-potential of 17,5 mV. Solution dynamic viscosity results kept relation with different stages of nano-complexation process. Biological activity of I-CS complexes was studied in 3T3-L1 cultured fibroblast showing a delayed and sustained activity as compared to free insulin. I-CS nano-complexes could be an alternative for developing a new generation of drugs allowing I protection from the hostile conditions of the body and increasing its absorption. These findings have basic and practical impacts as they could be exploited to exert the controlled release of I in therapeutic formulations by using the I-CS nano-complexes. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells
Autor:Silva, C.P.; Martínez, J.H.; Martínez, K.D.; Farías, M.E.; Leskow, F.C.; Pérez, O.E.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química BiológicaBuenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de IndustriasBuenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ)Buenos Aires, Argentina
Departamento de Tecnología, Universidad Nacional de Luján, Ruta 5 y 7, Luján, Provincia de Buenos Aires 6700, Argentina
CIC, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina
Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
Departamento de Desarrollo Productivo y Tecnológico, Universidad Nacional de LanúsBuenos Aires, Argentina
Palabras clave:Chitosan; Insulin; Macromolecular assembly; Nano-complexes; Bioactivity; Cell culture; Chitin; Chitosan; Dynamic light scattering; Electrostatics; Light scattering; Nanostructures; Zeta potential; Absorbance measurements; Complexation process; Controlled release; Different stages; Flow behaviors; Nano-complexes; Solution dynamics; Surface proteins; Insulin; biopolymer; chitosan; membrane protein; nanoshell; protein aggregate; recombinant human insulin; 3T3-L1 cell line; Article; biological activity; cell culture; colloid; complex formation; concentration (parameters); controlled release formulation; flow kinetics; kinetic parameters; macromolecule; molecular model; nanotechnology; particle size; pH; photon correlation spectroscopy; priority journal; static electricity; time factor; viscosity; zeta potential
Año:2018
Volumen:537
Página de inicio:425
Página de fin:434
DOI: http://dx.doi.org/10.1016/j.colsurfa.2017.10.040
Título revista:Colloids and Surfaces A: Physicochemical and Engineering Aspects
Título revista abreviado:Colloids Surf. A Physicochem. Eng. Asp.
ISSN:09277757
CODEN:CPEAE
CAS:chitosan, 9012-76-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09277757_v537_n_p425_Silva

Referencias:

  • Fonte, P., Araújo, F., Silva, C., Pereira, C., Reis, S., Santos, H.A., Sarmento, B., Polymer- based nanoparticles for oral insulin delivery: revisited approaches (2015) Biotechnol. Adv., 33, pp. 1342-1354
  • Islam, N., Ferro, V., Recent advances in chitosan-based nanoparticulate pulmonary drug delivery (2016) Nanoscale, 30, pp. 14341-14358
  • Iyer, R., Hsia, C.C.W., Nguyen, K.T., Nano-therapeutics for the lung: state-of-the- art and future perspectives (2015) Curr. Pharm. Des., 36 (2015), pp. 5233-5244
  • Shukla, S.K., Mishra, A.K., Arotiba, O.A., Mamba, B.B., Chitosan-based nanomaterials: a state-of-the-art review (2013) Int. J. Biol. Macromol., 59, pp. 46-58
  • Agrawal, P., Strijkers, G.J., Nicolay, K., Chitosan-based systems for molecular imaging (2010) Adv. Drug Deliv. Rev., 62, pp. 42-58
  • Pan, Y., Li, Y.J., Zhao, H.Y., Zheng, J.M., Xu, H., Wei, G., Hao, J.S., Cui, F.D., Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo (2002) Int. J. Pharm., 249, pp. 139-147
  • Bugnicourt, L., Alcouffe, P., Ladavière, C., Elaboration of chitosan nanoparticles: favorable impact of a mild thermal treatment to obtain finely divided, spherical, and colloidally stable objects (2014) Colloids Surf. A Physicochem. Eng. Aspects, 457, pp. 476-486
  • Mao, S., Bakowsky, U., Jintapattanakit, A., Kissel, T., Self‐assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin (2006) J. Pharm. Sci., 96, pp. 1035-1048
  • Alai, M.S., Lin, W.J., Pingale, S.S., Application of polymeric nanoparticles and micelles in insulin oral delivery (2015) J. Food Drug Anal., 23, pp. 351-358
  • Giger, K., Vanam, R.P., Seyrek, E., Dubin, P.L., Suppression of insulin aggregation by heparin (2008) Biomacromolecules, 9, pp. 2338-2344
  • Sharma, G., Sharma, A.R., Nam, J.-S., Doss, G.P.C., Lee, S.-S., Chakraborty, C., Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes (2015) J. Nanobiotechnol., 13, pp. 74-87
  • Marschütz, M.K., Bernkop-Schnürch, A., Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro (2000) Biomaterials, 21, pp. 1499-1507
  • Mukhopadhyay, P., Chakraborty, S., Bhattacharya, S., Mishra, R., Kundu, P.P., PH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery (2015) Int. J. Biol. Macromol., 72, pp. 640-648
  • Mukhopadhyay, P., Sarkar, K., Chakraborty, M., Bhattacharya, S., Mishra, R., Kundu, P.P., Oral insulin delivery by self-assembled chitosan nanoparticles: in vitro and in vivo studies in diabetic animal model (2013) Mater. Sci. Eng. C, 33, pp. 376-382
  • Parada, L.G., Miranda, R., Salvador, S., Caracterización de quitosano por viscosimetría capilar y valoración potenciométrica (2004) Rev. Iberoam. Polímeros., 5, pp. 1-16
  • Li, J., Wu, Y., Zhao, L., Antibacterial activity and mechanism of chitosan with ultra high molecular weight (2016) Carbohydr. Polym., 148, pp. 200-205
  • Tang, D.W., Yu, S.H., Ho, Y.C., Huang, B.Q., Tsai, G.J., Hsieh, H.Y., Sung, H.W., Mi, F.L., Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide (2013) Food Hydrocoll., 30, pp. 33-41
  • Weijers, M., Van De Velde, F., Stijnman, A., Van De Pijpekamp, A., Visschers, R.W., Structure and rheological properties of acid-induced egg white protein gels (2006) Food Hydrocoll., 20, pp. 146-159
  • Sogias, I.A., Williams, A.C., Khutoryanskiy, V.V., Why is chitosan mucoadhesive? (2008) Biomacromolecules, 9, pp. 1837-1842
  • Stirpe, A., Pantusa, M., Rizzuti, B., Sportelli, L., Bartucci, R., Guzzi, R., Early stage aggregation of human serum albumin in the presence of metal ions (2011) Int. J. Biol. Macromol., 49, pp. 337-342
  • Pérez, O.E., David-Birman, T., Kesselman, E., Levi-Tal, S., Lesmes, U., Milk protein–vitamin interactions: formation of beta-lactoglobulin/folic acid nano-complexes and their impact on in vitro gastro-duodenal proteolysis (2014) Food Hydrocoll., 38, pp. 40-47
  • Moore, J., Cerasoli, E., Particle light scattering methods and applications (2017) Encycl. Spectrosc. Spectrom, 54, pp. 543-553
  • Hunter, R., Foundations of Colloid Science (2001), Oxford University Press; Rao, M., Flow and functional models for rheological properties of fluid foods (2014) Rheology of Fluid, Semisolid, and Solid Foods, Food Engineering Series, pp. 27-61. , Springer Boston
  • Kumar Prusty, A., Sahu, S.K., Development and evaluation of insulin incorporated nanoparticles for oral administration (2013) ISRN Nanotechnol., pp. 1-6
  • Xu, Y., Yan, Y., Seeman, D., Sun, L., Dubin, P.L., Multimerization and aggregation of native state insulin: effect of zinc (2011) Langmuir, pp. 579-586
  • Dunn, M.F., Zinc –ligand interactions modulate assembly and stability of the insulin hexamer –a review (2005) Biometals, 2, pp. 295-303
  • Philippova, O.E., Volkov, E.V., Sitnikova, N.L., Khokhlov, A.R., Desbrieres, J., Rinaudo, M., Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative (2001) Biomacromolecules, 2, pp. 483-490
  • Tsuboi, A., Izumi, T., Hirata, M., Xia, J., Complexation of proteins with a strong polyanion in an aqueous salt-free system (1996) Langmuir, 7463, pp. 6295-6303
  • Smirnova, E., Safenkova, I., Stein-margolina, V., Shubin, V., Polshakov, V., Gurvits, B., Biochimie pH-responsive modulation of insulin aggregation and structural transformation of the aggregates (2015) Biochimie, 109, pp. 49-59
  • Coppolino, R., Coppolino, S., Villari, V., Study of the aggregation of insulin glargine by light scattering (2006) J. Pharm. Sci., 95, pp. 1029-1034
  • Fandrich, M., Forge, V., Buder, K., Kittler, M., Dobson, C.M., Diekmann, S., Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments (2003) Proc. Natl. Acad. Sci. U. S. A., 100, pp. 15463-15468
  • Holm, N.K., Jespersen, S.K., Thomassen, L.V., Wolff, T.Y., Sehgal, P., Thomsen, L.A., Christiansen, G., Otzen, D.E., Aggregation and fibrillation of bovine serum albumin (2007) Biochim. Biophys. Acta – Proteins Proteomics, 1774, pp. 1128-1138
  • Hamada, D., Dobson, C.M., A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea (2014) J. Agric. Food Chem., 11, pp. 595-606
  • Perez, O.E., Pilosof, A.M.R., Pulsed electric fields effects on the molecular structure and gelation ofbeta-lactoglobulin concentrate and egg white (2004) Food Res. Int., 37, pp. 102-110
  • Le, X.T., Rioux, L., Turgeon, S.L., Formation and functional properties of protein –polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels (2017) Adv. Colloid Interface Sci., 239, pp. 127-135
  • Juarez, J., Lopez, S.G., Cambon, A., Taboada, P., Mosquera, V., Influence of electrostatic interactions on the fibrillation process of human serum albumin (2009) J. Phys. Chem. B, 113, pp. 10521-10529
  • Ltd, M.I., Protein Characterization Using Dynamic & Static Light Scattering Techniques From Malvern Instruments, (09.24.2016); Hoemann, C.D., Fong, D., Immunological responses to chitosan for biomedical (2016) Chitosan based biomaterials, 1, p. 45. , J.A. Jenning J.D. Bumgardner Elsevier, Woodhead Publishing Cambridge, UK
  • Matalanis, A., Jones, O.G., McClements, D.J., Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds (2011) Food Hydrocoll., 25, pp. 1865-1880
  • Kohn, W.D., Micanovic, R., Myers, S.L., Vick, A.M., Kahl, S.D., Zhang, L., Strifler, B.A., DiMarchi, R.D., pI-shifted insulin analogs with extended in vivo time action and favorable receptor selectivity (2007) Peptides, 28, pp. 935-948
  • Ho, Q.T., Carmeliet, J., Datta, A.K., Defraeye, T., Delele, M.A., Herremans, E., Opara, L., Nicolaï, B.M., Multiscale modeling in food engineering (2013) J. Food Eng., 114, pp. 279-291
  • Bhattacharjee, S., Review article DLS and zeta potential –what they are and what they are not? (2016) J. Control. Release, 235, pp. 337-351
  • Portero, A., Remuñán-López, C., Nielsen, H.M., The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model—an in vitro model of the buccal epithelium (2002) Pharm. Res., 2, pp. 169-174
  • Karimi, M., Avci, P., Mobasseri, R., Hamblin, M.R., Naderi-Manesh, H., The novel albumin-chitosan core-shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation (2013) J. Nanoparticle Res., 15, pp. 1651-1665
  • Reddy, N., Reddy, R., Jiang, Q., Crosslinking biopolymers for biomedical applications (2015) Trends Biotechnol., 33, pp. 362-369
  • Martínez-Padilla, L.P., García-Rivera, J.L., Romero-Arreola, V., Casas-Alencáster, N.B., Effects of xanthan gum rheology on the foaming properties of whey protein concentrate (2015) J. Food Eng., 156, pp. 22-30
  • McKenna, B.M., Lyng, J.G., Rheological measurements of foods (2001) Instrum Tech. Qual. Control Lab., , University College Dublin
  • Bohidar, H., Dubin, P.L., Majhi, P.R., Tribet, C., Jaeger, W., Effects of protein- polyelectrolyte affinity and polyelectrolyte molecular weight on dynamic properties of bovine serum albumin- poly (diallyldimethylammonium chloride) coacervates (2005) Biomacromolecules, 6, pp. 1573-1585
  • Ltd, M.I., Size Measurement and Molecular Weight Estimation of Globins using Dynamic Light Scattering From Malvern Instruments, (03.17.2017); Poulos, S.P., Dodson, M.V., Hausman, G.J., Cell line models for differentiation: preadipocytes and adipocytes (2012) Exp. Biol. Med., 235, pp. 1185-1193
  • Giudice, J., Barcos, L.S., Guaimas, F.F., Penas-Steinhardt, A., Giordano, L., a Jares-Erijman, E., Coluccio Leskow, F., Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B (2013) Cell Commun. Signal., 11, p. 18
  • Giudice, J., Jares-Erijman, E.A., Leskow, F.C., Endocytosis and intracellular dissociation rates of human insulin-insulin receptor complexes by quantum dots in living cells (2013) Bioconjugate Chem., 24, pp. 431-442

Citas:

---------- APA ----------
Silva, C.P., Martínez, J.H., Martínez, K.D., Farías, M.E., Leskow, F.C. & Pérez, O.E. (2018) . Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 537, 425-434.
http://dx.doi.org/10.1016/j.colsurfa.2017.10.040
---------- CHICAGO ----------
Silva, C.P., Martínez, J.H., Martínez, K.D., Farías, M.E., Leskow, F.C., Pérez, O.E. "Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells" . Colloids and Surfaces A: Physicochemical and Engineering Aspects 537 (2018) : 425-434.
http://dx.doi.org/10.1016/j.colsurfa.2017.10.040
---------- MLA ----------
Silva, C.P., Martínez, J.H., Martínez, K.D., Farías, M.E., Leskow, F.C., Pérez, O.E. "Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells" . Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 537, 2018, pp. 425-434.
http://dx.doi.org/10.1016/j.colsurfa.2017.10.040
---------- VANCOUVER ----------
Silva, C.P., Martínez, J.H., Martínez, K.D., Farías, M.E., Leskow, F.C., Pérez, O.E. Proposed molecular model for electrostatic interactions between insulin and chitosan. Nano-complexation and activity in cultured cells. Colloids Surf. A Physicochem. Eng. Asp. 2018;537:425-434.
http://dx.doi.org/10.1016/j.colsurfa.2017.10.040