Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

DC surface conductance is a simple and powerful method for the study of electrochemical interfaces. Its applicability to semiconductor film/electrolyte junctions is analyzed from a theoretical and experimental approach. The experimental design and the fundamentals of the measuring method for semiconductor film electrodes are presented, taking into account the potential and current distribution arising from the polarization current and its influence on the measuring current. The dependence of surface conductance on the electrode potential is modeled by describing the space charge layer as that of an ideal Schottky junction. Corrections due to the decrease of carrier mobility in strong accumulation layers are also included in the model. Surface conductance-potential curves for CdS films in electrolytes are interpreted with this simple model, and parameters such as flat band potential, donor density and mobility are obtained for these interfaces. These results correlate with those obtained from capacitance and modulated transmittance experiments. Conductance measurements for CdS surface modified by S 2- or by Au deposits reveal that there is a change in the density of filled carrier traps with energy levels in the band gap. DC surface conductance is a simple and powerful method for the study of electrochemical interfaceS. Its applicability to semiconductor film/electrolyte junctions is analyzed from a theoretical and experimental approach. The experimental design and the fundamentals of the measuring method for semiconductor film electrodes are presented, taking into account the potential and current distribution arising from the polarization current and its influence on the measuring current. The dependence of surface conductance on the electrode potential is modeled by describing the space charge layer as that of an ideal Schottky junction. Corrections due to the decrease of carrier mobility in strong accumulation layers are also included in the model. Surface conductance-potential curves for CdS films in electrolytes are interpreted with this simple model, and parameters such as flat band potential, donor density and mobility are obtained for these interfaces. These results correlate with those obtained from capacitance and modulated transmittance experiments. Conductance measurements for CdS surface modified by S 2- or by Au deposits reveal that there is a change in the density of filled carrier traps with energy levels in the band gap.

Registro:

Documento: Artículo
Título:DC surface conductance as a tool for the study of electrochemical interfaces
Autor:Bilmes, S.A.; Posadas, D.
Ciudad:Amsterdam
Filiación:Departamento de Quimica Inorganica, Fac. de Cie. Exact. y Nat. Univ., Ciudad Universitaria Pab. II, 1428 Buenos Aires, Argentina
INIFTA, Universidad Nacional de La Plata, Suc. 4, CC 16, 1900 La Plata, Argentina
Palabras clave:CdS films; Modified semiconductor electrodes; Semiconductor/electrolyte interfaces; Surface conductance; Capacitance measurement; Electric current measurement; Electric resistance measurement; Electric space charge; Electrochemical electrodes; Electrolytes; Energy gap; Mathematical models; Polarization; Semiconducting cadmium compounds; Semiconducting films; Cadmium sulfide; Carrier mobility; Interfaces (materials); article; conductance; electric conductivity; electrochemical detection; electrode; polarization; priority journal; semiconductor; surface property
Año:1998
Volumen:134
Número:1-2
Página de inicio:47
Página de fin:57
DOI: http://dx.doi.org/10.1016/S0927-7757(97)00316-6
Título revista:Colloids and Surfaces A: Physicochemical and Engineering Aspects
Título revista abreviado:Colloids Surf. A Physicochem. Eng. Asp.
ISSN:09277757
CODEN:CPEAE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09277757_v134_n1-2_p47_Bilmes

Referencias:

  • Anderson, W.J., Hansen, W.N., (1973) J. Electroanal, Chem., 43, p. 329
  • (1973) J. Electroanal, Chem., 47, p. 229
  • Hansen, W.N., (1980) Surf. Sci., 101, p. 109
  • Rath, D.L., Hansen, W.N., (1984) Surf. Sci., 136, p. 195
  • Bilmes, S.A., (1996) J. Chem. Soc., Faraday Trans., 92, p. 2381
  • Rath, D.L., (1979), Ph.D. Thesis, Utah State University, Logan, Utah; Tucceri, R.I., Posadas, D., (1994) Curr. Topics Electrochem., 3, p. 423. , and references cited therein
  • Tardella, A., Chazalviel, J.N., (1985) Phys. Rev. B, 32, p. 2439
  • Laibinis, P., Stanton, C., Lewis, N., (1994) J. Phys. Chem., 98, p. 8765
  • Alcober, C.S., Bilmes, S.A., (1996) Chem. Phys. Lett., 256, p. 431
  • Balzers, Product information for BALTRACON ® conductive coatings; Kaur, Y., Pandya, D., Chopra, K., (1980) J. Electrochem. Soc., 127, p. 943
  • Froment, M., Lincot, D., (1995) Electrochim. Acta, 40, p. 1293
  • Tucceri, R.I., Posadas, D., (1981) J. Electrochem. Soc., 128, p. 1478
  • Pleskov, Yu.V., Gurevich, Yu.Y., (1986) Semiconductor Photoelectrochemistry, , Consultant Bureau, New York
  • Many, A., (1975) Surface Science, 1, p. 461. , International Atomic Energy Agency, Vienna
  • Fuchs, K., (1938) Proc. Camb. Philos. Soc., 34, p. 100
  • Sondeheimer, E.H., (1952) Adv. Phys., 1, p. 1
  • Wedler, G., Wissmann, P., (1971) Surf. Sci., 26, p. 389
  • Lide, D.R., CRC Handbook of Chemistry and Physics, 75th Edn., pp. 12-45. , CRC Press, Ann Arbor
  • Rauh, R.D., (1988) Studies in Physics and Theoretical Chemistry, Vol. 55, Semiconductor Electrodes, 55. , H.O. Finklea (Ed.), Elsevier, Amsterdam
  • Meissner, D., Memming, R., Kastening, B., (1988) J. Phys. Chem., 92, p. 3476
  • Hickman, J.J., Wrighton, H.S., (1991) J Am. Chem. Soc., 113, p. 4440
  • Baranski, A., Bennett, M., Fawcett, W., (1983) J. Appl. Phys., 54, p. 6390
  • Von Windheim, J., Wynands, H., Cociveira, M., (1991) J. Electrochem. Soc., 138, p. 3435
  • Seto, J.Y., (1975) J. Appl. Phys., 46, p. 5565
  • Pujadas, M., Gandia, J., Salvador, P., Decker, F., (1987) J. Electroanal. Chem., 18, p. 347
  • Gandia, J., Pujadas, M., Salvador, P., (1988) J. Electroanal. Chem., 224, p. 69
  • Talalla, D., Pujadas, M., Salvador, P., (1989) Surf. Sci., 215, p. 190
  • Nakato, Y., Tsubomura, H., (1985) J. Photochem., 29, p. 257
  • Uosaki, K., Shigematsu, Y., Kita, H., Umezawa, Y., (1989) Anal Chem., 61, p. 1980
  • Dean, M.H., Stimming, U., (1987) J. Electroanal. Chem., 228, p. 135

Citas:

---------- APA ----------
Bilmes, S.A. & Posadas, D. (1998) . DC surface conductance as a tool for the study of electrochemical interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 134(1-2), 47-57.
http://dx.doi.org/10.1016/S0927-7757(97)00316-6
---------- CHICAGO ----------
Bilmes, S.A., Posadas, D. "DC surface conductance as a tool for the study of electrochemical interfaces" . Colloids and Surfaces A: Physicochemical and Engineering Aspects 134, no. 1-2 (1998) : 47-57.
http://dx.doi.org/10.1016/S0927-7757(97)00316-6
---------- MLA ----------
Bilmes, S.A., Posadas, D. "DC surface conductance as a tool for the study of electrochemical interfaces" . Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 134, no. 1-2, 1998, pp. 47-57.
http://dx.doi.org/10.1016/S0927-7757(97)00316-6
---------- VANCOUVER ----------
Bilmes, S.A., Posadas, D. DC surface conductance as a tool for the study of electrochemical interfaces. Colloids Surf. A Physicochem. Eng. Asp. 1998;134(1-2):47-57.
http://dx.doi.org/10.1016/S0927-7757(97)00316-6