Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Supernova remnants (SNRs) are among the most important targets for γ-ray observatories. Being prominent non-thermal sources, they are very likely responsible for the acceleration of the bulk of Galactic cosmic rays (CRs). To firmly establish the SNR paradigm for the origin of cosmic rays, it should be confirmed that protons are indeed accelerated in, and released from, SNRs with the appropriate flux and spectrum. This can be done by detailed theoretical models which account for microphysics of acceleration and various radiation processes of hadrons and leptons. The current generation of Cherenkov telescopes has insufficient sensitivity to constrain theoretical models. A new facility, the Cherenkov Telescope Array (CTA), will have superior capabilities and may finally resolve this long standing issue of high-energy astrophysics. We want to assess the capabilities of CTA to reveal the physics of various types of SNRs in the initial 2000 years of their evolution. During this time, the efficiency to accelerate cosmic rays is highest. We perform time-dependent simulations of the hydrodynamics, the magnetic fields, the cosmic-ray acceleration, and the non-thermal emission for type Ia, Ic and IIP SNRs. We calculate the CTA response to the γ-ray emission from these SNRs for various ages and distances, and we perform a realistic analysis of the simulated data. We derive distance limits for the detectability and resolvability of these SNR types at several ages. We test the ability of CTA to reconstruct their morphological and spectral parameters as a function of their distance. Finally, we estimate how well CTA data will constrain the theoretical models. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:The Cherenkov Telescope Array potential for the study of young supernova remnants
Autor:Acharya, B.S. et al.
Este artículo contiene 138 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 138 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Palabras clave:Acceleration of particles; Gamma rays: General; ISM: Supernova remnants; Radiation mechanisms: Non-termal
Año:2015
Volumen:62
Página de inicio:152
Página de fin:164
DOI: http://dx.doi.org/10.1016/j.astropartphys.2014.08.005
Título revista:Astroparticle Physics
Título revista abreviado:Astropart. Phys.
ISSN:09276505
CODEN:APHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09276505_v62_n_p152_Acharya

Referencias:

  • Acero, F., Bamba, A., Casanova, S., (2013) Astropart. Phys., 43, p. 276
  • Acharya, B.S., Actis, M., Aghajani, T., (2013) Astropart. Phys., 43, p. 3
  • Ackermann, M., Ajello, M., Allafort, A., (2013) Science, 339, p. 807
  • Actis, M., Agnetta, G., Aharonian, F., (2011) Exp. Astron., 32, p. 193
  • Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., (2011) Science, 332, p. 69
  • Apel, W.D., Arteaga-Velázquez, J.C., Bekk, K., (2012) Astropart. Phys., 36, p. 183
  • Becherini, Y., Khélifi, B., Pita, S., Punch, M., (2012) American Institute of Physics Conference Series, 1505, pp. 769-772. , CTA Consortium F.A. Aharonian, W. Hofmann, F.M. Rieger, American Institute of Physics
  • Berezhko, E.G., Völk, H.J., (1997) Astropart. Phys., 7, p. 183
  • Berge, D., Funk, S., Hinton, J., (2007) A&A, 466, p. 1219
  • Bernlöhr, K., Barnacka, A., Becherini, Y., (2013) Astropart. Phys., 43, p. 171
  • Blasi, P., Gabici, S., Vannoni, G., (2005) MNRAS, 361, p. 907
  • Bretz, T., Dorner, D., Riegel, B., Höhne, D., Berger, K., (2005) International Cosmic Ray Conference, 4, p. 311
  • Bykov, A.M., Ellison, D.C., Osipov, S.M., Vladimirov, A.E., (2014) ApJ, 789, p. 137
  • Caprioli, D., Blasi, P., Amato, E., Vietri, M., (2009) MNRAS, 395, p. 895
  • Caprioli, D., Kang, H., Vladimirov, A.E., Jones, T.W., (2010) MNRAS, 407, p. 1773
  • Chevalier, R.A., Fransson, C., (1994) ApJ, 420, p. 268
  • Chevalier, R.A., Oishi, J., (2003) ApJ, 593, p. 23
  • Dame, T.M., Hartmann, D., Thaddeus, P., (2001) ApJ, 547, p. 792
  • Daum, A., Hermann, G., Hess, M., (1997) Astropart. Phys., 8, p. 1
  • Dwarkadas, V.V., (2005) ApJ, 630, p. 892
  • Dwarkadas, V.V., (2007) ApJ, 667, p. 226
  • Dwarkadas, V.V., Chevalier, R.A., (1998) ApJ, 497, p. 807
  • Ferrand, G., Decourchelle, A., Safi-Harb, S., (2014) ApJ, 789, p. 49
  • Funk, S., Hinton, J.A., (2013) Astropart. Phys., 43, p. 348. , CTA Consortium
  • Gibson, S.J., Taylor, A.R., Higgs, L.A., Brunt, C.M., Dewdney, P.E., (2005) ApJ, 626, p. 214
  • Ginzburg, V.L., Syrovatsky, S.I., (1961) Progr. Theor. Phys. Suppl., 20, p. 1
  • Gotthelf, E.V., Koralesky, B., Rudnick, L., (2001) ApJ, 552, p. 39
  • Helder, E.A., Vink, J., (2008) ApJ, 686, p. 1094
  • Huang, C., Park, S., Pohl, M., Daniels, C.D., (2007) Astropart. Phys., 27, p. 429
  • Kalberla, P.M.W., Burton, W.B., Hartmann, D., (2005) A&A, 440, p. 775
  • Kang, H., Jones, T.W., Edmon, P.P., (2013) ApJ, 777, p. 25
  • Konopelko, A., Aharonian, F., Hemberger, M., (1999) J. Phys. G Nucl. Phys., 25, p. 1989
  • Lee, S.-H., Ellison, D.C., Nagataki, S., (2012) ApJ, 750, p. 156
  • Li, T.-P., Ma, Y.-Q., (1983) ApJ, 272, p. 317
  • McClure-Griffiths, N.M., Dickey, J.M., Gaensler, B.M., (2005) ApJs, 158, p. 178
  • Menn, W., Hof, M., Reimer, O., (2000) ApJ, 533, p. 281
  • Pohl, M., Englmaier, P., Bissantz, N., (2008) ApJ, 677, p. 283
  • Ptuskin, V., Zirakashvili, V., Seo, E., (2010) ApJ, 718, p. 31
  • Ptuskin, V., Zirakashvili, V., Seo, E.-S., (2013) ApJ, 763, p. 47
  • Renaud, M., (2011) Mem. Soc. Astron. Italiana, 82, p. 726. , CTA Consortium
  • Schure, K.M., Achterberg, A., Keppens, R., Vink, J., (2010) MNRAS, 406, p. 2633
  • Shayduk, M., (2013) CTA Consortium, , (ArXiv e-prints)
  • Smartt, S.J., Eldridge, J.J., Crockett, R.M., Maund, J.R., (2009) MNRAS, 395, p. 1409
  • Stecker, F.W., (1973) ApJ, 185, p. 499
  • Telezhinsky, I., Dwarkadas, V., Pohl, M., (2012) Astropart. Phys., 35, p. 300
  • Telezhinsky, I., Dwarkadas, V.V., Pohl, M., (2012) A&A, 541, p. 153
  • Telezhinsky, I., Dwarkadas, V.V., Pohl, M., (2013) A&A, 552, p. 102
  • Zirakashvili, V.N., Ptuskin, V.S., (2008) ApJ, 678, p. 939
  • V.N. Zirakashvili, V.S. Ptuskin, 2011, ArXiv e-prints 1109.4482

Citas:

---------- APA ----------
(2015) . The Cherenkov Telescope Array potential for the study of young supernova remnants. Astroparticle Physics, 62, 152-164.
http://dx.doi.org/10.1016/j.astropartphys.2014.08.005
---------- CHICAGO ----------
Acharya, B.S. "The Cherenkov Telescope Array potential for the study of young supernova remnants" . Astroparticle Physics 62 (2015) : 152-164.
http://dx.doi.org/10.1016/j.astropartphys.2014.08.005
---------- MLA ----------
Acharya, B.S. "The Cherenkov Telescope Array potential for the study of young supernova remnants" . Astroparticle Physics, vol. 62, 2015, pp. 152-164.
http://dx.doi.org/10.1016/j.astropartphys.2014.08.005
---------- VANCOUVER ----------
Acharya, B.S. The Cherenkov Telescope Array potential for the study of young supernova remnants. Astropart. Phys. 2015;62:152-164.
http://dx.doi.org/10.1016/j.astropartphys.2014.08.005