Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown. © 2012 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)
Autor:Multitudinario:501
Filiación:Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF, CONICET, Argentina
Departamento de Física, FCEyN, Universidad de Buenos Aires y CONICET, Argentina
IFLP, Universidad Nacional de la Plata, CONICET, La Plata, Argentina
Instituto de Astronomía y Física del Espacio (CONICET-UBA), Buenos Aires, Argentina
Instituto de Física de Rosario (IFIR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina
Instituto de Tecnologías en Detección y Astropartí culas (CNEA CONICET UNSAM), Buenos Aires, Argentina
National Technological University, Faculty Mendoza (CONICET/CNEA), Mendoza, Argentina
Observatorio Pierre Auger, Malargüe, Argentina
Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina
Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, Buenos Aires, Argentina
University of Adelaide, Adelaide, SA, Australia
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil
Universidade de São Paulo, Instituto de Física, São Carlos, SP, Brazil
Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
Universidade Estadual de Feira de Santana, Brazil
Universidade Estadual Do Sudoeste da Bahia, Vitoria da Conquista, BA, Brazil
Universidade Federal da Bahia, Salvador, BA, Brazil
Universidade Federal Do ABC, Santo André, SP, Brazil
Universidade Federal Do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
Rudjer Boškovi'c Institute, 10000 Zagreb, Croatia
Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Palacky University, RCPTM, Olomouc, Czech Republic
Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay, France
Laboratoire AstroParticule et Cosmologie (APC), Université Paris 7, CNRS-IN2P3, Paris, France
Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris 11, CNRS-IN2P3, Orsay, France
Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, INPG, Grenoble, France
SUBATECH, École des Mines de Nantes, Université de Nantes, Nantes, France
Bergische Universität Wuppertal, Wuppertal, Germany
Karlsruhe Institute of Technology, Campus North, Institut für Kernphysik, Karlsruhe, Germany
Karlsruhe Institute of Technology, Campus North, Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
Karlsruhe Institute of Technology, Campus South, Institut für Experimentelle Kernphysik (IEKP), Karlsruhe, Germany
Max-Planck-Institut für Radioastronomie, Bonn, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
Universität Hamburg, Hamburg, Germany
Universität Siegen, Siegen, Germany
Dipartimento di Fisica dell'Università, INFN, Genova, Italy
Università dell'Aquila, INFN, L'Aquila, Italy
Università di Milano, Sezione INFN, Milan, Italy
Dipartimento di Fisica dell'Università del Salento, Sezione INFN, Lecce, Italy
Università di Napoli Federico II, Sezione INFN, Napoli, Italy
Università di Roma II Tor Vergata, Sezione INFN, Roma, Italy
Università di Catania, Sezione INFN, Catania, Italy
Università di Torino, Sezione INFN, Torino, Italy
Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Sezione INFN, Lecce, Italy
Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
Istituto di Fisica Dello Spazio Interplanetario (INAF), Università di Torino, Sezione INFN, Torino, Italy
INFN, Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila), Italy
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), México, DF, Mexico
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico
Universidad Nacional Autonoma de Mexico, Mexico, DF, Mexico
IMAPP, Radboud University Nijmegen, Netherlands
Kernfysisch Versneller Instituut, University of Groningen, Groningen, Netherlands
Nikhef, Science Park, Amsterdam, Netherlands
ASTRON, Dwingeloo, Netherlands
Institute of Nuclear Physics PAN, Krakow, Poland
University of Łódź, Łódź, Poland
LIP, Instituto Superior Técnico, Technical University of Lisbon, Portugal
'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
University of Bucharest, Physics Department, Romania
University Politehnica of Bucharest, Romania
J. Stefan Institute, Ljubljana, Slovenia
Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
Instituto de Física Corpuscular, CSIC-Universitat de Valncia, Valencia, Spain
Universidad Complutense de Madrid, Madrid, Spain
Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
Universidad de Granada, C.A.F.P.E., Granada, Spain
Universidad de Santiago de Compostela, Spain
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
School of Physics and Astronomy, University of Leeds, United Kingdom
Argonne National Laboratory, Argonne, IL, United States
Case Western Reserve University, Cleveland, OH, United States
Colorado School of Mines, Golden, CO, United States
Colorado State University, Fort Collins, CO, United States
Colorado State University, Pueblo, CO, United States
Fermilab, Batavia, IL, United States
Los Alamos National Laboratory, Los Alamos, NM, United States
Louisiana State University, Baton Rouge, LA, United States
Michigan Technological University, Houghton, MI, United States
New York University, New York, NY, United States
Northeastern University, Boston, MA, United States
Ohio State University, Columbus, OH, United States
Pennsylvania State University, University Park, PA, United States
Southern University, Baton Rouge, LA, United States
University of Chicago, Enrico Fermi Institute, Chicago, IL, United States
University of Nebraska, Lincoln, NE, United States
University of New Mexico, Albuquerque, NM, United States
University of Wisconsin, Madison, WI, United States
University of Wisconsin, Milwaukee, WI, United States
Institute for Nuclear Science and Technology (INST), Hanoi, Viet Nam
University of Maryland, United States
Universitéde Lausanne, Switzerland
University, Kobe, Japan
NYU, Abu Dhabi, United Arab Emirates
Palabras clave:Atmospheric models; Atmospheric monitoring; Cosmic rays; Extensive air showers; Air showers; Atmospheric conditions; Atmospheric model; Atmospheric monitoring; Extensive air showers; Global atmospheric models; Global data assimilation system; Meteorological measurements; Numerical weather prediction; Pierre Auger observatory; State variables; Weather stations; Augers; Buildings; Cosmic rays; Observatories; Atmospheric humidity
Año:2012
Volumen:35
Número:9
Página de inicio:591
Página de fin:607
DOI: http://dx.doi.org/10.1016/j.astropartphys.2011.12.002
Título revista:Astroparticle Physics
Título revista abreviado:Astropart. Phys.
ISSN:09276505
CODEN:APHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09276505_v35_n9_p591_Multitudinario

Referencias:

  • Abraham, J., Aglietta, M., Aguirre, I.C., Albrow, M., Allard, D., Allekotte, I., Allison, P., Deligny, O., Properties and performance of the prototype instrument for the Pierre Auger Observatory (2004) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 523 (1-2), pp. 50-95. , DOI 10.1016/j.nima.2003.12.012
  • Abraham, J., The fluorescence detector of the Pierre Auger Observatory (2010) Nucl. Instrum. Methods, 620 A, pp. 227-251. , 10.1016/j.nima.2010.04.023 arxiv:0907.4282
  • Abraham, J., A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory (2010) APh, 33, pp. 108-129. , arxiv:1002.0366
  • Abraham, J., Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger Observatory (2009) APh, 32, pp. 89-99. , arxiv:0906.5497
  • Louedec, K., The Pierre Auger Collaboration, Atmospheric monitoring at the pierre auger observatory - Status and update (2011) Proc. 32nd ICRC, , arxiv:1107.4806 Beijing, China
  • Keilhauer, B., The Pierre Auger Collaboration The balloon-the-shower programme of the Pierre Auger Observatory (2010) Astrophys. Space Sci. Trans., 6, pp. 27-30
  • Arqueros, F., Hörandel, J., Keilhauer, B., Air fluorescence relevant for cosmic-ray detection - Summary of the 5th fluorescence workshop, El Escorial 2007 (2008) Nucl. Instrum. Methods, 597 A, pp. 1-22. , arxiv:0807.3760
  • Ave, M., Temperature and humidity dependence of air fluorescence yield measured by AIRFLY (2008) Nucl. Instrum. Methods, 597 A, pp. 50-54
  • Boháčová, M., The AIRFLY Collaboration, Temperature and humidity dependence of air fluorescence yield (2009) 6th Air Fluorescence Workshop, , L'Aquila, Italy
  • Nagano, M., New measurement on photon yields from air and the application to the energy estimation of primary cosmic rays (2004) APh, 22, pp. 235-248
  • Owens, J.C., Temperature and composition (1967) Appl. Opt., 6, pp. 51-59
  • Ciddor, P.E., Refractive index of air: 3. The roles of CO 2 , H 2 O, and refractivity virials (2002) Applied Optics, 41 (12), pp. 2292-2298
  • Birch, K., Downs, M., An updated Edlén equation for the refractive index of air (1993) Metrologia, 30, pp. 155-162
  • Tomasi, C., Vitale, V., Petkov, B., Lupi, A., Cacciari, A., Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres (2005) Applied Optics, 44 (16), pp. 3320-3341. , DOI 10.1364/AO.44.003320
  • Keilhauer Et Al., B., The Pierre Auger Collaboration, Rapid atmospheric monitoring after the detection of high-energy showers at the Pierre Auger Observatory (2009) Proc. 31st ICRC, , arxiv:0906.2358 Łódź, Poland
  • Müller, P., Von Storch, H., (2004) Computer Modeling in Atmospheric and Oceanic Sciences, , Springer Verlag
  • Wergen, W., Datenassimilation - Ein Überblick (2002) Promet, 27 (3-4), pp. 142-149. , (in German)
  • (2004) Tech. Rep., , http://ready.arl.noaa.gov/gdas1.php, NOAA Air Resources Laboratory (ARL), Global Data Assimilation System (GDAS1) Archive Information
  • (1976) US Standard Atmosphere 1976, , National Aeronautics and Space Administration (NASA), NASA-TM-X-74335
  • (2010) GFS/G DAS Changes Since 1991, , http://www.emc.ncep.noaa.gov/gmb/STATS/html/model_changes.html, Tech. Rep., National Centers for Environmental Prediction (NCEP)
  • Stunder, B., (2011), NOAA Air Resources Laboratory, private communication; Mahoney, M., (2008) A Discussion of Various Measures of Altitude, , http://mtp.mjmahoney.net/www/notes/altitude/altitude.html, Tech. Rep
  • Bodhaine, B.A., Wood, N.B., Dutton, E.G., Slusser, J.R., On Rayleigh optical depth calculations (1999) Journal of Atmospheric and Oceanic Technology, 16 (11 PART 2), pp. 1854-1861
  • Argir, S., The offline software framework of the Pierre Auger Observatory (2007) Nucl. Instrum. Methods, 580 A, pp. 1485-1496. , arxiv:0707.1652
  • Ave, M., Bohacova, M., Buonomo, B., Busca, N., Cazon, L., Chemerisov, S.D., Conde, M.E., Waldenmaier, T., Measurement of the pressure dependence of air fluorescence emission induced by electrons (2007) Astroparticle Physics, 28 (1), pp. 41-57. , DOI 10.1016/j.astropartphys.2007.04.006, PII S0927650507000564
  • Pesce Et Al., R., The Pierre Auger Collaboration, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory: An update (2011) Proc. 32nd ICRC, , arxiv:1107.4809 Beijing, China
  • Keilhauer, B., Blümer, J., Engel, R., Klages, H., Altitude dependence of fluorescence light emission by extensive air showers (2008) Nucl. Instrum. Methods, 597 A, pp. 99-104. , arxiv:0801.4200
  • Bergmann, T., Engel, R., Heck, D., Kalmykov, N.N., Ostapchenko, S., Pierog, T., Thouw, T., Werner, K., One-dimensional hybrid approach to extensive air shower simulation (2007) Astroparticle Physics, 26 (6), pp. 420-432. , DOI 10.1016/j.astropartphys.2006.08.005, PII S0927650506001228
  • Ostapchenko, S., QGSJET-II: Towards reliable description of very high energy hadronic interactions (2006) Nuclear Physics B - Proceedings Supplements, 151 (1), pp. 143-146. , DOI 10.1016/j.nuclphysbps.2005.07.026, PII S0920563205009175
  • Keilhauer, B., Unger, M., Fluorescence emission induced by extensive air showers in dependence on atmospheric conditions (2009) Proc. 31st ICRC, , arxiv:0906.5487 Łódź, Poland

Citas:

---------- APA ----------
(2012) . Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS). Astroparticle Physics, 35(9), 591-607.
http://dx.doi.org/10.1016/j.astropartphys.2011.12.002
---------- CHICAGO ----------
Multitudinario:501. "Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)" . Astroparticle Physics 35, no. 9 (2012) : 591-607.
http://dx.doi.org/10.1016/j.astropartphys.2011.12.002
---------- MLA ----------
Multitudinario:501. "Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)" . Astroparticle Physics, vol. 35, no. 9, 2012, pp. 591-607.
http://dx.doi.org/10.1016/j.astropartphys.2011.12.002
---------- VANCOUVER ----------
Multitudinario:501. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS). Astropart. Phys. 2012;35(9):591-607.
http://dx.doi.org/10.1016/j.astropartphys.2011.12.002