Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The air fluorescence detector of the Pierre Auger Observatory is designed to perform calorimetric measurements of extensive air showers created by cosmic rays of above 10 18 eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group of monitoring instruments to record atmospheric conditions across the detector site, an area exceeding 3000 km 2 . The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements on air shower reconstructions. Between 10 18 and 10 20 eV, the systematic uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g cm - 2 to 8 g cm - 2 in measurements of the shower maximum. © 2010 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory
Autor:Multitudinario:466
Filiación:Centro Atómico Bariloche, Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
Centro Atomico Constituyentes (Comision Nacional de Energia Atomica/CONICET/UTN-FRBA), Buenos Aires, Argentina
Centro de Investigaciones en Láseres y Aplicaciones, CITEFA, CONICET, Argentina
Departamento de Física, FCEyN, Universidad de Buenos Aires, Argentina
IFLP, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
Instituto de Astronomía y Física del Espacio (CONICET), Buenos Aires, Argentina
National Technological University, Faculty Mendoza (CONICET/CNEA), Mendoza, Argentina
Pierre Auger Southern Observatory, Malargüe, Argentina
Pierre Auger Southern Observatory and Comisión Nacional de Energía Atómica, Malargüe, Argentina
University of Adelaide, Adelaide, SA, Australia
Universidad Catolica de Bolivia, La Paz, Bolivia
Universidad Mayor de San Andrés, Bolivia
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil
Pontifícia Universidade Católica, Rio de Janeiro, RJ, Brazil
Universidade de São Paulo, Instituto de Física, São Carlos, SP, Brazil
Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil
Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
Universidade Estadual de Feira de Santana, Brazil
Universidade Estadual do Sudoeste da Bahia, Vitoria da Conquista, BA, Brazil
Universidade Federal da Bahia, Salvador, BA, Brazil
Universidade Federal, ABC, Santo André, SP, Brazil
Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil
Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
Institute of Physics, the Academy of Sciences of the Czech Republic, Prague, Czech Republic
Palacký University, Olomouc, Czech Republic
Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris 11, CNRS-IN2P3, Orsay, France
Laboratoire AstroParticule et Cosmologie (APC), Université Paris 7, CNRS-IN2P3, Paris, France
Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris 11, CNRS-IN2P3, Orsay, France
Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Universités Paris 6 et Paris 7, CNRS-IN2P3, Paris, France
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier, INPG, Grenoble, France
SUBATECH, CNRS-IN2P3, Nantes, France
Bergische Universität Wuppertal, Wuppertal, Germany
Forschungszentrum Karlsruhe, Institut für Kernphysik, Karlsruhe, Germany
Forschungszentrum Karlsruhe, Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
Max-Planck-Institut für Radioastronomie, Bonn, Germany
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
Universität Karlsruhe (TH), Institut für Experimentelle Kernphysik (IEKP), Karlsruhe, Germany
Universität Siegen, Siegen, Germany
Universität Hamburg, Hamburg, Germany
Dipartimento di Fisica dell'Università, INFN, Genova, Italy
Università dell'Aquila, INFN, L'Aquila, Italy
Università di Milano, Sezione INFN, Milan, Italy
Dipartimento di Fisica dell'Università del Salento, Sezione INFN, Lecce, Italy
Università di Napoli Federico II, Sezione INFN, Napoli, Italy
Università di Roma II Tor Vergata, Sezione INFN, Roma, Italy
Università di Catania, Sezione INFN, Catania, Italy
Università di Torino, Sezione INFN, Torino, Italy
Dipartimento di Ingegneria dell'Innovazione dell'Università del Salento, Sezione INFN, Lecce, Italy
Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
Istituto di Fisica dello Spazio Interplanetario (INAF), Università di Torino, Sezione INFN, Torino, Italy
INFN, Laboratori Nazionali del Gran Sasso, Assergi, L'Aquila, Italy
Università di Palermo, Sezione INFN, Catania, Italy
Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
Centro de Investigación y de Estudios Avanzados, IPN (CINVESTAV), México, D.F., Mexico
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico
Universidad Nacional Autonoma de Mexico, Mexico, D.F., Mexico
IMAPP, Radboud University, Nijmegen, Netherlands
Kernfysisch Versneller Instituut, University of Groningen, Groningen, Netherlands
NIKHEF, Amsterdam, Netherlands
ASTRON, Dwingeloo, Netherlands
Institute of Nuclear Physics PAN, Krakow, Poland
University of Łódź, Łódź, Poland
LIP, Instituto Superior Técnico, Lisboa, Portugal
J. Stefan Institute, Ljubljana, Slovenia
Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
Instituto de Física Corpuscular, CSIC-Universitat de València, Valencia, Spain
Universidad Complutense de Madrid, Madrid, Spain
Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
Universidad de Granada, C.A.F.P.E., Granada, Spain
Universidad de Santiago de Compostela, Spain
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
School of Physics and Astronomy, University of Leeds, United Kingdom
Argonne National Laboratory, Argonne, IL, United States
Case Western Reserve University, Cleveland, OH, United States
Colorado School of Mines, Golden, CO, United States
Colorado State University, Fort Collins, CO, United States
Colorado State University, Pueblo, CO, United States
Fermilab, Batavia, IL, United States
Louisiana State University, Baton Rouge, LA, United States
Michigan Technological University, Houghton, MI, United States
New York University, New York, NY, United States
Northeastern University, Boston, MA, United States
Ohio State University, Columbus, OH, United States
Pennsylvania State University, University Park, PA, United States
Southern University, Baton Rouge, LA, United States
University of California, Los Angeles, CA, United States
University of Chicago, Enrico Fermi Institute, Chicago, IL, United States
University of Hawaii, Honolulu, HI, United States
University of Nebraska, Lincoln, NE, United States
University of New Mexico, Albuquerque, NM, United States
University of Wisconsin, Madison, WI, United States
University of Wisconsin, Milwaukee, WI, United States
Institute for Nuclear Science and Technology (INST), Hanoi, Viet Nam
Palabras clave:Aerosols; Air fluorescence method; Atmosphere; Bi-static lidar; Cosmic rays; Extensive air showers; Lidar; Aerosols; Augers; Cosmic rays; Cosmology; Earth atmosphere; Fluorescence; Observatories; Optical radar; Uncertainty analysis; Air fluorescences; Atmospheric conditions; Atmospheric fluctuations; Calorimetric measurements; Extensive air showers; Monitoring instruments; Pierre Auger observatory; Systematic uncertainties; Cosmic ray measurement
Año:2010
Volumen:33
Número:2
Página de inicio:108
Página de fin:129
DOI: http://dx.doi.org/10.1016/j.astropartphys.2009.12.005
Título revista:Astroparticle Physics
Título revista abreviado:Astropart. Phys.
ISSN:09276505
CODEN:APHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09276505_v33_n2_p108_Multitudinario

Referencias:

  • Bunner, A., (1967) Cosmic Ray Detection by Atmospheric Fluorescence, , Ph.D. Thesis, Cornell University, Ithaca, New York
  • Arqueros, F., Hörandel, J.R., Keilhauer, B., (2008) Nucl. Instrum. Methods, A597, pp. 1-22. , Available from: <arXiv:0807.3760[astro-ph]>
  • Baltrusaitis, R.M., The Utah fly's eye detector (1985) Nucl. Instrum. Methods, A240, pp. 410-428
  • Unger, M., Dawson, B.R., Engel, R., Schussler, F., Ulrich, R., Reconstruction of longitudinal profiles of ultra-high energy cosmic ray showers from fluorescence and Cherenkov light measurements (2008) Nucl. Instrum. Methods, A588, pp. 433-441. , Available from: <arXiv:0801.4309[astro-ph]>
  • Linsley, J., (1977) Proceedings of 15th ICRC, 12, p. 89. , Plovdiv, Bulgaria
  • McComb, T.J.L., Turver, K.E., The average depth of cascade maximum in large cosmic ray showers from particle measurements (1982) J. Phys., G8, pp. 871-877
  • B. Keilhauer et al., Atmospheric profiles at the southern Pierre Auger Observatory and their relevance to air shower measurement, in: Proceedings of 29th ICRC, 7, Pune, India, 2005, pp. 123-127. Available from: <arXiv:astro-ph/0507275>; http://badc.nerc.ac.uk/data/radiosglobe/radhelp.html, The British Atmospheric Data Centre; Wilczyńska, B., Variation of atmospheric depth profile on different time scales (2006) Astropart. Phys., 25, pp. 106-117. , Available from: <arXiv:astro-ph/0603088>
  • Keilhauer, B., Impact of varying atmospheric profiles on extensive air shower observation: fluorescence light emission and energy reconstruction (2006) Astropart. Phys., 25, pp. 259-268. , Available from: <arXiv:astro-ph/0511153>
  • Tegen, I., Lacis, A.A., Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol (1996) J. Geophys. Res., 101 (D14), pp. 19,237-19,244
  • Baltensperger, U., Nyeki, S., Kalberer, M., Atmospheric particulate matter (2003) Handbook of Atmospheric Science, pp. 228-254. , Hewitt C.N., and Jackson A.V. (Eds), Blackwell
  • Kinne, S., An AeroCom initial assessment - optical properties in aerosol component modules of global models (2006) Atmos. Chem. Phys., 6, pp. 1815-1834
  • Allekotte, I., The surface detector system of the Pierre Auger Observatory (2008) Nucl. Instrum. Methods, A586, pp. 409-420. , Available from: <arXiv:0712.2832[astro-ph]>
  • Abraham, J., The fluorescence detector of the Pierre Auger Observatory Nucl. Instrum. Methods A, , submitted for publication
  • Sommers, P., Capabilities of a giant hybrid air shower detector (1995) Astropart. Phys., 3, pp. 349-360
  • Abu-Zayyad, T., Measurement of the cosmic ray energy spectrum and composition from 10 17 eV to 10 18.3 eV using a hybrid fluorescence technique (2001) Ap. J., 557, pp. 686-699. , Available from: <arXiv:astro-ph/0010652>
  • Mostafá, M., Hybrid activities of the Pierre Auger Observatory (2007) Nucl. Phys. Proc. Suppl., 165, pp. 50-58. , Available from: <arXiv:astro-ph/0608670>
  • Dawson, B.R., Hybrid performance of the Pierre Auger Observatory (2007) Proceedings of 30th ICRC, 4, pp. 425-428. , Mérida, México, Available from: <arXiv:0706.1105[astro-ph]>
  • Fick, B., The central laser facility at the Pierre Auger Observatory (2006) JINST, 1, pp. P11003
  • BenZvi, S.Y., The lidar system of the Pierre Auger Observatory (2007) Nucl. Instrum. Methods, A574, pp. 171-184
  • BenZvi, S.Y., Measurement of the aerosol phase function at the Pierre Auger Observatory (2007) Astropart. Phys., 28, pp. 312-320. , Available from: <arXiv:0704.0303[astro-ph]>
  • BenZvi, S.Y., Measurement of aerosols at the Pierre Auger Observatory (2007) Proceedings of 30th ICRC, 4, pp. 355-358. , Mérida, México, Available from: <arXiv:0706.3236[astro-ph]>
  • S.Y. BenZvi et al., New method for atmospheric calibration at the Pierre Auger Observatory using FRAM, a robotic astronomical telescope, in: Proceedings of 30th ICRC, 4, Mérida, México, 2007, pp. 347-350. Available from: <arXiv:0706.1710[astro-ph]>; Valore, L., Atmospheric aerosol measurements at the Pierre Auger Observatory Proceedings of 31st ICRC, Łódź, Poland, 2009. Available from: <arXiv:0906.2358[astro-ph]>
  • Kakimoto, F., A measurement of the air fluorescence yield (1996) Nucl. Instrum. Methods, A372, pp. 527-533
  • Nagano, M., Kobayakawa, K., Sakaki, N., Ando, K., New measurement on photon yields from air and the application to the energy estimation of primary cosmic rays (2004) Astropart. Phys., 22, pp. 235-248. , Available from: <arXiv:astro-ph/0406474>
  • Abbasi, R., The FLASH thick-target experiment (2008) Nucl. Instrum. Methods, A597, pp. 37-40
  • Bohacova, M., A novel method for the absolute fluorescence yield measurement by AIRFLY (2008) Nucl. Instrum. Methods, A597, pp. 55-60. , Available from: <arXiv:0812.3649>
  • Arqueros, F., Hoerandel, J.R., Keilhauer, B., Air fluorescence relevant for cosmic-ray detection - review of pioneering measurements (2008) Nucl. Instrum. Methods, A597, pp. 23-31. , Available from: <arXiv:0807.3844>
  • Ave, M., Measurement of the pressure dependence of air fluorescence emission induced by electrons (2007) Astropart. Phys., 28, p. 41. , Available from: <arXiv:astro-ph/0703132>
  • Keilhauer, B., Bluemer, J., Engel, R., Klages, H.O., Altitude dependence of fluorescence light emission by extensive air showers (2008) Nucl. Instrum. Methods, A597, pp. 99-104. , Available from: <arXiv:0801.4200[astro-ph]>
  • Seinfeld, J.H., Pandis, S.N., (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, , Wiley
  • Killinger, D.K., Menyuk, N., Laser remote sensing of the atmosphere (1987) Science, 235, pp. 37-45
  • Burris, J., McGee, T.J., Heaps, W., UV Raman cross sections in nitrogen (1992) Appl. Spec., 46, p. 1076
  • Bucholtz, A., Rayleigh-scattering calculations for the terrestrial atmosphere (1995) Appl. Opt., 34, pp. 2765-2773
  • Naus, H., Ubachs, W., Experimental verification of rayleigh scattering cross sections (2000) Opt. Lett., 25, pp. 347-349
  • Mie, G., Contribution to the optics of turbid media, especially colloidal metallic suspensions (1908) Ann. Phys., 25, pp. 377-445
  • Ångstrøm, A., On the atmospheric transmission of sun radiation and on dust in the air (1929) Geographical Anal., 12, pp. 130-159
  • McCartney, E.J., (1976) Optics of the Atmosphere, , Wiley
  • Schuster, G.L., Dubovik, O., Holben, B.N., Angstrom exponent and bimodal aerosol size distributions (2006) J. Geophys. Res., 111 (D10), p. 7207
  • Eck, T.F., Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols (1999) J. Geophys. Res., 104 (D24), pp. 31333-31350
  • Whittet, D.C.B., Bode, M.F., Murdin, P., The extinction properties of Saharan dust over La Palma (1987) Vistas Astron., 30, pp. 135-144
  • Fishburne, E.S., Neer, M.E., Sandri, G., (1976) Voice Communication Via Scattered Ultraviolet Radiation, ARAP, 274. , Aeronautical Research Associates, Princeton, New Jersey
  • Riewe, F., Green, A.E.S., Ultraviolet aureole around a source at a finite distance (1978) Appl. Opt., 17, pp. 1923-1929
  • Henyey, L.G., Greenstein, J.L., Diffuse radiation in the Galaxy (1941) Astrophys. J., 93, pp. 70-83
  • Roberts, M.D., The role of atmospheric multiple scattering in the transmission of fluorescence light from extensive air showers (2005) J. Phys., G31, pp. 1291-1301
  • Pȩkala, J., Góra, D., Homola, P., Wilczyńska, B., Wilczyński, H., Contribution of multiple scattering of cherenkov photons to shower optical image (2003) Proceedings of 28th ICRC, pp. 551-554. , Tsukuba, Japan
  • Giller, M., Smialkowski, A., Multiple scattering of the fluorescence light from EAS (2005) Proceedings of 29th ICRC, 7, pp. 195-198. , Pune, India
  • Pekala, J., Homola, P., Wilczynska, B., Wilczynski, H., Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers (2009) Nucl. Instrum. Methods, A605, pp. 388-398. , Available from: <arXiv:0904.3230[astro-ph]>
  • Weather Stations, , http://www.campbellsci.com, Campbell Scientific, Inc
  • C. Bleve, Weather induced effects on extensive air showers observed with the surface detector of the Pierre Auger Observatory, in: Proceedings of 30th ICRC, 4, Mérida, México, 2007, pp. 319-322. Available from: <arXiv:0706.1491[astro-ph]>; Abraham, J., Atmospheric effects on extensive air showers observed with the surface detector of the pierre auger observatory (2009) Astropart. Phys, 32, pp. 89-99
  • http://www.graw.de, Graw Radiosondes GmbH; Wiencke, L., Extracting first science measurements from the southern detector of the Pierre Auger Observatory (2007) Nucl. Instrum. Methods, A572, pp. 508-510. , Available from: <arXiv:astro-ph/0607449>
  • Abbasi, R., Techniques for measuring atmospheric aerosols at the high resolution fly's eye experiment (2006) Astropart. Phys., 25, pp. 74-83. , Available from: <arXiv:astro-ph/0512423>
  • Filipčič, A., Scanning lidar based atmospheric monitoring for fluorescent detectors of cosmic showers (2003) Astropart. Phys., 18, pp. 501-512
  • Andrews, E., Comparison of methods for deriving the aerosol asymmetry parameter (2006) J. Geophys. Res., 111 (D10), pp. D05S04
  • Kaskaoutis, D.G., On the characterization of aerosols using the angstrom exponent in the Athens area (2006) J. Atmos. Solar-Terr. Phys., 68, p. 2147
  • Allen, J., The Pierre Auger Observatory offline software (2008) J. Phys. Conf. Ser., 119, p. 032002. , 10.1088/1742-6596/119/3/032002)
  • Schüssler, F., Measurement of the cosmic ray energy spectrum above 10 18 eV with the Pierre Auger Observatory Proceedings 31st ICRC, Łódź, Poland, 2009. <arXiv:0906.2189[astro-ph]>
  • Di Giulio, C., Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory Proceedings of 31st ICRC, Łódź, Poland, 2009. <arXiv:0906.2189[astro-ph]>
  • Bellido, J., Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory Proceedings of 31st ICRC, Łódź, Poland, 2009. <arXiv:0906.2319[astro-ph]>
  • Standard, U.S., Atmosphere (1976) COESA Report, , US Government Printing Office, Washington, DC
  • Morozov, A., (2005) Eur. Phys. J., D33, p. 207
  • Waldenmaier, T., Bluemer, J., Klages, H., Spectral resolved measurement of the nitrogen fluorescence emissions in air induced by electrons (2008) Astropart. Phys., 29, pp. 205-222. , Available from: arXiv:0709.1494[astro-ph]
  • M. Prouza, in: Proceedings of 30th ICRC, 4, Mérida, México, 2007, pp. 351-354. Available from: <arXiv:0706.1719[astro-ph]>; Abraham, J., Observation of the suppression of the flux of cosmic rays above 4 × 10 19 eV (2008) Phys. Rev. Lett., 101, p. 061101. , Avaiilable from: <arXiv:0806.4302[astro-ph]>
  • Keilhauer, B., Rapid monitoring of the atmosphere at the Pierre Auger Observatory Proceedings of 31st ICRC, Łódź, Poland, 2009. <arXiv:0906.2358[astro-ph]>

Citas:

---------- APA ----------
(2010) . A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory. Astroparticle Physics, 33(2), 108-129.
http://dx.doi.org/10.1016/j.astropartphys.2009.12.005
---------- CHICAGO ----------
Multitudinario:466. "A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory" . Astroparticle Physics 33, no. 2 (2010) : 108-129.
http://dx.doi.org/10.1016/j.astropartphys.2009.12.005
---------- MLA ----------
Multitudinario:466. "A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory" . Astroparticle Physics, vol. 33, no. 2, 2010, pp. 108-129.
http://dx.doi.org/10.1016/j.astropartphys.2009.12.005
---------- VANCOUVER ----------
Multitudinario:466. A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory. Astropart. Phys. 2010;33(2):108-129.
http://dx.doi.org/10.1016/j.astropartphys.2009.12.005