Artículo

Schor, I.E.; Gómez Acuña, L.I.; Kornblihtt, A.R.; Wu J.Y. "Coupling between transcription and alternative splicing" (2013) Cancer Treatment and Research:1-24
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The scenario of alternative splicing regulation is far more complex than the classical picture of a pre-mRNA being processed post-transcriptionally in more than one way. Introns are efficiently removed while transcripts are still being synthesized, supporting the idea of a co-transcriptional regulation of alternative splicing. Evidence of a functional coupling between splicing and transcription has recently emerged as it was observed that properties of one process may affect the outcome of the other. Co-transcriptionality is thought to improve splicing efficiency and kinetics by directing the nascent pre-mRNA into proper spliceosome assembly and favoring splicing factor recruitment. Two models have been proposed to explain the coupling of transcription and alternative splicing: in the recruitment model, promoters and pol II status affect the recruitment to the transcribing gene of splicing factors or bifunctional factors acting on both transcription and splicing; in the kinetic model, differences in the elongation rate of pol II would determine the timing in which splicing sites are presented, and thus the outcome of alternative splicing decisions. In the later model, chromatin structure has emerged as a key regulator. Although definitive evidence for transcriptionally coupled alternative splicing alterations in tumor development or cancer pathogenesis is still missing, many alternative splicing events altered in cancer might be subject to transcription-splicing coupling regulation. © 2013 Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Coupling between transcription and alternative splicing
Autor:Schor, I.E.; Gómez Acuña, L.I.; Kornblihtt, A.R.; Wu J.Y.
Filiación:Laboratorio de Fisiologia y Biologia Molecular, Departmento de Fisiologia, Biologia Molecular y Celular, Universidad de Buenos Aires, 20 Piso, Buenos Aires 1428, Argentina
Palabras clave:Alternative splicing; Chromatin; Co-transcriptional splicing; Kinetic model; RNA polymerase II-CTD; Transcription-splicing coupling; messenger RNA; RNA polymerase II; alternative RNA splicing; article; carcinogenesis; chromatin structure; genetic transcription; human; intron; kinetics; priority journal; protein assembly; regulatory mechanism; RNA transcription; spliceosome; transcription regulation
Año:2013
Página de inicio:1
Página de fin:24
DOI: http://dx.doi.org/10.1007/978-3-642-31659-3-1
Título revista:Cancer Treatment and Research
Título revista abreviado:Cancer Treat. Res.
ISSN:09273042
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09273042_v_n_p1_Schor

Referencias:

  • Srebrow, A., Kornblihtt, A.R., The connection between splicing and cancer (2006) J Cell Sci, 119 (13), pp. 2635-26411
  • Muñoz, M.J., Perez Santángelo, M.S., Paronetto, M.P., De La Mata, M., Pelisch, F., Boireau, S., Glover-Cutter, K., Kornblihtt, A.R., DNA damage regulates alternative splicing through inhibition of RNA Polymerase II elongation (2009) Cell, 137, pp. 708-7200
  • Berget, S.M., Exon recognition in vertebrate splicing (1995) J Biol Chem, 270 (6), pp. 2411-24144
  • Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Burge, C.B., Alternative isoformregulation in human tissue transcriptomes (2008) Nature, 456 (27), pp. 470-4766
  • Pan, Q., Shai, O., Lee, L.J., Frey, B.J., Blencowe, B.J., Deep surveying of alternative splicing complexity in the human transcriptome by high throughput sequencing (2008) Nat Genet, 40 (12), pp. 1413-14155
  • Ermakova, E.O., Nurtdinov, R.N., Gelfand, M.S., Fast rate of evolution in alternative spliced coding regions of mammalian genes (2006) BMC Genomics, 7, pp. 84-933
  • Smith, C.W., Valcárcel, J., Alternative pre-mRNA splicing: The logic of combinatorial control (2000) Trends Biochem Sci, 25 (8), pp. 381-3888
  • Cáceres, J.F., Kornblihtt, A.R., Alternative splicing: Multiple control mechanisms and involvement in human disease (2002) Trends Genet, 18, pp. 186-1933
  • Black, D.L., Mechanisms of alternative pre-messenger RNA splicing (2003) Annu Rev Biochem, 72, pp. 291-3366
  • Sharp, P.A., Split genes and RNA splicing (1994) Cell, 77 (6), pp. 805-8155
  • Kornblihtt, A.R., Pesce, C.G., Alonso, C.R., The fibronectin gene as a model for splicing and transcription studies (1996) FASEB J, 10 (2), pp. 248-2577
  • Fededa, J.P., Petrillo, E., Gelfand, M.S., A polar mechanism coordinates different regions of alternative splicing within a single gene (2005) Mol Cell, 19 (3), pp. 393-4044
  • Lenasi, T., Peterlin, B.M., Dovc, P., Distal regulation of alternative splicing by splicing enhancer in equine beta-casein intron 1 (2006) RNA, 12 (3), pp. 498-5077
  • Romano, M., Marcucci, R., Baralle, F.E., Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene (2001) Nucleic Acids Res, 29 (4), pp. 886-8944
  • Bentley, D., The mRNA assembly line: Transcription and processing machines in the same factory (2002) Curr Opin Cell Biol, 14 (3), pp. 336-3422
  • Bentley, D.L., Rules of engagement: Co-transcriptional recruitment of pre-mRNA processing factors (2005) Curr Opin Cell Biol, 17 (3), pp. 251-2566
  • Maniatis, T., Reed, R., An extensive network of coupling among gene expression machines (2002) Nature, 416 (6880), pp. 499-5066
  • Kornblihtt, A.R., Promoter usage and alternative splicing (2005) Curr Opin Cell Biol, 17 (3), pp. 262-2688
  • Zorio, D.A., Bentley, D.L., The link between mRNA processing and transcription: Communication works both ways (2004) Exp Cell Res, 296 (1), pp. 91-977
  • Neugebauer, K.M., On the importance of being co-transcriptional (2002) J Cell Sci, 115 (PART 20), pp. 3865-38711
  • Proudfoot, N.J., Furger, A., Dye, M.J., Integrating mRNA processing with transcription (2002) Cell, 108 (4), pp. 501-5122
  • Beyer, A.L., Osheim, Y.N., Splice site selection, rate of splicing, and alternative splicing on nascent transcripts (1988) Genes Dev, 2 (6), pp. 754-7655
  • Tennyson, C.N., Klamut, H.J., Worton, R.G., The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced (1995) Nat Genet, 9 (2), pp. 184-1900
  • Pandya-Jones, A., Black, D.L., Co-transcriptional splicing of constitutive and alternative exons (2009) RNA, 15, pp. 1896-19088
  • Bauren, G., Wieslander, L., Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription (1994) Cell, 76 (1), pp. 183-1922
  • De La Mata, M., Lafaille, C., Kornblihtt, A.R., First come, first served revisited: Factors affecting the same alternative splicing events have different effects on the relative rates of intron removal (2010) RNA, 16, pp. 904-9122
  • Lazarev, D., Manley, J.L., Concurrent splicing and transcription are not sufficient to enhance splicing efficiency (2007) RNA, 13, pp. 1546-15577
  • Perales, R., Bentley, D., "Cotranscriptionality": The transcription elongation complex as a Nexus for nuclear transactions (2009) Mol Cell, 36, pp. 178-1911
  • Alexander, R.D., Innocente, S.A., Barrass, J.D., Beggs, J.D., Splicing-dependent RNA Polymerase pausing in yeast (2010) Mol Cell, 40, pp. 582-5933
  • Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S., Fu, X.D., The splicing factor SC35 has an active role in transcriptional elongation (2008) Nat Struct Mol Biol, 15 (8), pp. 819-8266
  • Carrillo Oesterreich, F., Preibisch, S., Neugebauer, K.M., Global analysis of nascent RNA reveals transcriptional pausing in terminal exons (2010) Mol Cell, 40, pp. 571-5811
  • Smale, S.T., Tjian, R., Transcription of herpes simplex virus tk sequences under the control of wild-type and mutant human RNA polymerase i promoters (1985) Mol Cell Biol, 5 (2), pp. 352-3622
  • Sisodia, S.S., Sollner-Webb, B., Cleveland, D.W., Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation (1987) Mol Cell Biol, 7 (10), pp. 3602-36122
  • McCracken, S., Rosonina, E., Fong, N., Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing (1998) Cold Spring Harb Symp Quant Biol, 63, pp. 301-3099
  • Dower, K., Rosbash, M., T7 RNA polymerase-directed transcripts are processed in yeast and link 30 end formation to mRNA nuclear export (2002) RNA, 8 (5), pp. 686-6977
  • Hicks, M.J., Yang, C.R., Kotlajich, M.V., Hertel, K.J., Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns (2006) PLoS Biol, 4 (6), pp. e1477
  • Das, R., Dufu, K., Romney, B., Feldt, M., Elenko, M., Reed, R., Functional coupling of RNAP II transcription to spliceosome assembly (2006) Genes Dev, 20 (9), pp. 1100-11099
  • Das, R., Yu, J., Zhang, Z., Gygi, M.P., Krainer, A.R., Gygi, S.P., Reed, R., SR proteins function in coupling RNAP II trancription to pre-mRNA splicing (2007) Mol Cell, 26, pp. 867-8811
  • Misteli, T., Spector, D.L., RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo (1999) Mol Cell, 3 (6), pp. 697-7055
  • McCracken, S., Fong, N., Yankulov, K., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385 (6614), pp. 357-3611
  • Zeng, C., Berget, S.M., Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing (2000) Mol Cell Biol, 20 (21), pp. 8290-83011
  • Hirose, Y., Tacke, R., Manley, J.L., Phosphorylated RNA polymerase II stimulates premRNA splicing (1999) Genes Dev, 13 (10), pp. 1234-12399
  • Dye, M.J., Gromak, N., Proudfoot, N.J., Exon tethering in transcription by RNA polymerase II (2006) Mol Cell, 21 (6), pp. 849-8599
  • Sims III, R.J., Belotserkovskaya, R., Reinberg, D., Elongation by RNA polymerase II: The short and long of it (2004) Genes Dev, 18 (20), pp. 2437-24688
  • Breaking barriers to transcription elongation (2006) Nat Rev Mol Cell Biol, 7 (8), pp. 557-5677. , Saunders A, Core LJ, Lis JT
  • Muñoz, M.J., De La Mata, M., Kornblihtt, A.R., The carboxy terminal domain of RNA polymerase II and alternative splicing (2010) Trends Biochem Sci, 35, pp. 497-5044
  • Xu, Y.X., Hirose, Y., Zhou, X.Z., Lu, K.P., Manley, J.L., Pin1 modulates the structure and function of human RNA polymerase II (2003) Genes Dev, 17 (22), pp. 2765-27766
  • Bird, G., Zorio, D.A., Bentley, D.L., RNA Polymerase II Carboxy-Terminal domain phosphorylation is required for Cotranscriptional Pre-mRNA Splicing and 30-End formation (2004) Mol Cell Biol, 24 (20), pp. 8963-89699
  • De La Mata, M., Kornblihtt, A.R., Pol II CTD mediates SRp20 regulation of alternative splicing (2006) Nat Struct Mol Biol, 13 (11), pp. 973-9800
  • Laurencikiene, J., Kallman, A.M., Fong, N., Bentley, D.L., Ohman, M., RNA editing and alternative splicing: The importance of co-transcriptional coordination (2006) EMBO Rep, 7 (3), pp. 303-3077
  • Rosonina, E., Blencowe, B.J., Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 30-end cleavage (2004) RNA, 10 (4), pp. 581-5899
  • Sims III, R.J., Millhouse, S., Chen, C.F., Lewis, B.A., Erdjument-Bromage, H., Tempst, P., Manley, J.L., Reinberg, D., Recognition of Trimethylated Histone H3 Lysine 4 facilitates the recruitment of transcription postinitiation factors and Pre-mRNA splicing (2007) Mol Cell, 28, pp. 665-6766
  • Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Misteli, T., Regulation of alternative splicing by histone modifications (2010) Science, 327, pp. 996-10000
  • Edmunds, J.W., Mahadevan, L.C., Clayton, A.L., Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation (2008) EMBO J, 27, pp. 406-4200
  • Krogan, N.J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V., Richards, D.P., Greenblatt, J., Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II (2003) Mol Cell Biol, 23 (12), pp. 4207-42188
  • Cramer, P., Pesce, C.G., Baralle, F.E., Kornblihtt, A.R., Functional association between promoter structure and transcript alternative splicing (1997) Proc Natl Acad Sci U S A, 94 (21), pp. 11456-114600
  • Cramer, P., Caceres, J.F., Cazalla, D., Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol Cell, 4 (2), pp. 251-2588
  • Auboeuf, D., Honig, A., Berget, S.M., O'Malley, B.W., Coordinate regulation of transcription and splicing by steroid receptor coregulators (2002) Science, 298 (5592), pp. 416-4199
  • Pagani, F., Stuani, C., Zuccato, E., Kornblihtt, A.R., Baralle, F.E., Promoter architecture modulates CFTR exon 9 skipping (2003) J Biol Chem, 278 (3), pp. 1511-15177
  • Robson-Dixon, N.D., Garcia-Blanco, M.A., MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb (2004) J Biol Chem, 279 (28), pp. 29075-290844
  • Nogues, G., Kadener, S., Cramer, P., Bentley, D., Kornblihtt, A.R., Transcriptional activators differ in their abilities to control alternative splicing (2002) J Biol Chem, 277 (45), pp. 43110-431144
  • Rosonina, E., Bakowski, M.A., McCracken, S., Blencowe, B.J., Transcriptional activators control splicing and 30-end cleavage levels (2003) J Biol Chem, 278 (44), pp. 43034-430400
  • Auboeuf, D., Dowhan, D.H., Kang, Y.K., Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes (2004) Proc Natl Acad Sci U S A, 101 (8), pp. 2270-22744
  • Auboeuf, D., Dowhan, D.H., Li, X., CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing (2004) Mol Cell Biol, 24 (1), pp. 442-4533
  • Kotovic, K.M., Lockshon, D., Boric, L., Neugebauer, K.M., Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast (2003) Mol Cell Biol, 23 (16), pp. 5768-57799
  • Lacadie, S.A., Rosbash, M., Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:50ss base pairing in yeast (2005) Mol Cell, 19 (1), pp. 65-755
  • Gornemann, J., Kotovic, K.M., Hujer, K., Neugebauer, K.M., Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex (2005) Mol Cell, 19 (1), pp. 53-633
  • Listerman, I., Sapra, A.K., Neugebauer, K.M., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat Struct Mol Biol, 13 (9), pp. 815-8222
  • Lai, M.C., Teh, B.H., Tarn, W.Y., A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing (1999) J Biol Chem, 274 (17), pp. 11832-118411
  • Monsalve, M., Wu, Z., Adelmant, G., Puigserver, P., Fan, M., Spiegelman, B.M., Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1 (2000) Mol Cell, 6 (2), pp. 307-3166
  • Guillouf, C., Gallais, I., Moreau-Gachelin, F., Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding-dependent manner (2006) J Biol Chem, 281 (28), pp. 19145-191555
  • Davies, R.C., Calvio, C., Bratt, E., Larsson, S.H., Lamond, A.I., Hastie, N.D., WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes (1998) Genes Dev, 12 (20), pp. 3217-32255
  • Nayler, O., Stratling, W., Bourquin, J.P., SAF-B protein couples transcription and premRNA splicing to SAR/MAR elements (1998) Nucleic Acids Res, 26 (15), pp. 3542-35499
  • Goldstrohm, A.C., Albrecht, T.R., Sune, C., Bedford, M.T., Garcia-Blanco, M.A., The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1 (2001) Mol Cell Biol, 21 (22), pp. 7617-76288
  • Lin, K.T., Lu, R.M., Tarn, W.Y., The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo (2004) Mol Cell Biol, 24 (20), pp. 9176-91855
  • Yuryev, A., Patturajan, M., Litingtung, Y., The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins (1996) Proc Natl Acad Sci U S A, 93 (14), pp. 6975-69800
  • Young, J.I., Hong, E.P., Castle, J.C., Regulation of RNA splicing by the methylationdependent transcriptional repressor methyl-CpG binding protein 2 (2005) Proc Natl Acad Sci U S A., 102 (49), pp. 17551-175588
  • Millhouse, S., Manley, J.L., The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein (2005) Mol Cell Biol, 25 (2), pp. 533-5444
  • Sato, S., Tomomori-Sato, C., Parmely, T.J., A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology (2004) MolCell, 14 (5), pp. 685-6911
  • Eperon, L.P., Graham, I.R., Griffiths, A.D., Eperon, I.C., Effects of RNA secondary structure on alternative splicing of pre-mRNA: Is folding limited to a region behind the transcribing RNA polymerase? (1988) Cell, 54 (3), pp. 393-4011
  • Roberts, G.C., Gooding, C., Mak, H.Y., Proudfoot, N.J., Smith, C.W., Co-transcriptional commitment to alternative splice site selection (1998) Nucleic Acids Res, 26 (24), pp. 5568-55722
  • Kadener, S., Cramer, P., Nogues, G., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J, 20 (20), pp. 5759-57688
  • Kadener, S., Fededa, J.P., Rosbash, M., Kornblihtt, A.R., Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation (2002) Proc Natl Acad Sci U S A, 99 (12), pp. 8185-81900
  • Nogues, G., Munoz, M.J., Kornblihtt, A.R., Influence of polymerase II processivity on alternative splicing depends on splice site strength (2003) J Biol Chem, 278 (52), pp. 52166-521711
  • De La Mata, M., Alonso, C.R., Kadener, S., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol Cell, 12 (2), pp. 525-5322
  • Howe, K.J., Kane, C.M., Ares Jr., M., Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae (2003) RNA, 9 (8), pp. 993-10066
  • Lorincz, M.C., Dickerson, D.R., Schmitt, M., Groudine, M., Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells (2004) Nat Struct Mol Biol, 11 (11), pp. 1068-10755
  • Batsche, E., Yaniv, M., Muchardt, C., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat Struct Mol Biol, 13 (1), pp. 22-299
  • Kornblihtt, A.R., Chromatin, transcript elongation and alternative splicing (2006) Nat Struct Mol Biol, 13 (1), pp. 5-77
  • Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc Natl Acad Sci USA, 106 (11), pp. 4325-43300
  • Alló, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., De La Mata, M., Agirre, E., Kornblihtt, A.R., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat Struct Mol Biol, 16 (7), pp. 717-7244
  • Suzuki, K., Juelich, T., Lim, H., Ishida, T., Watanebe, T., Cooper, D.A., Rao, S., Kelleher, A.D., Closed Chromatin architecture Is induced by an RNA Duplex targeting the HIV-1 promoter region (2008) J Biol Chem, 283, pp. 23353-233633
  • Kim, D.H., Villeneuve, L.M., Morris, K.V., Rossi, J.J., Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells (2006) Nat Struct Mol Biol, 13, pp. 793-7977
  • Morris, K.V., Chan, S.W., Jacobsen, S.E., Looney, D.J., Small interfering RNA-induced transcriptional gene silencing in human cells (2004) Science, 305, pp. 1289-12922
  • Schwartz, S., Meshorer, E., Ast, G., Chromatin organization marks exon-intron structure (2009) Nat Struct Mol Biol, 16 (9), pp. 990-9955
  • Tilgner, H., Nikolaou, C., Althammer, S., Sammeth, M., Beato, M., Valcárcel, J., Guigó, R., Nucleosome positioning as a determinant of exon recognition (2009) Nat Struct Mol Biol, 16 (9), pp. 996-10011
  • Kolosinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S., Ahringer, J., Differential chromatin marking of introns and expressed exons by H3K36me3 (2009) Nat Genet, 41 (3), pp. 376-3811
  • Yang, L., Embree, L.J., Hickstein, D.D., TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins (2000) Mol Cell Biol, 20 (10), pp. 3345-33544

Citas:

---------- APA ----------
Schor, I.E., Gómez Acuña, L.I., Kornblihtt, A.R. & Wu J.Y. (2013) . Coupling between transcription and alternative splicing. Cancer Treatment and Research, 1-24.
http://dx.doi.org/10.1007/978-3-642-31659-3-1
---------- CHICAGO ----------
Schor, I.E., Gómez Acuña, L.I., Kornblihtt, A.R., Wu J.Y. "Coupling between transcription and alternative splicing" . Cancer Treatment and Research (2013) : 1-24.
http://dx.doi.org/10.1007/978-3-642-31659-3-1
---------- MLA ----------
Schor, I.E., Gómez Acuña, L.I., Kornblihtt, A.R., Wu J.Y. "Coupling between transcription and alternative splicing" . Cancer Treatment and Research, 2013, pp. 1-24.
http://dx.doi.org/10.1007/978-3-642-31659-3-1
---------- VANCOUVER ----------
Schor, I.E., Gómez Acuña, L.I., Kornblihtt, A.R., Wu J.Y. Coupling between transcription and alternative splicing. Cancer Treat. Res. 2013:1-24.
http://dx.doi.org/10.1007/978-3-642-31659-3-1