Artículo

Fioressi, S.E.; Bacelo, D.E.; Bozzolo, G.; Mosca, H.O.; Del Grosso, M.F. "Atomistic modeling of Ag, Au, and Pt nanoframes" (2015) Computational Materials Science. 98:142-148
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cubic monoatomic nanoframes of Ag, Au, and Pt were modeled in terms of their evolution with temperature. Using an approximate quantum method for the energetics, Monte Carlo atomistic simulations were performed to determine the critical temperatures at which the nanoframe evolves from its original shape to either a cluster of nanoparticles after all sides of the frame are broken, or to a large cluster after collapsing onto its own internal void. The mechanisms by which these two behaviors take place are discussed within the framework of a simple rule which determines the relationship between the structural factors (side and width) that characterize the transition from one to the other. © 2014 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Atomistic modeling of Ag, Au, and Pt nanoframes
Autor:Fioressi, S.E.; Bacelo, D.E.; Bozzolo, G.; Mosca, H.O.; Del Grosso, M.F.
Filiación:Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Villanueva 1324, Buenos Aires, CP 1426, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Loyola University of Maryland, 4501 N. Charles St, Baltimore, MD 21210, United States
Grupo de Caracterización y Modelación de Materiales, UTN, FRGP, H. Yrigoyen 288, Gral. Pacheco, B1617FRP, Argentina
Materia Condensada, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, B1650KNA, Argentina
Sub-Gcia. de Tecnología y Aplicaciones de Aceleradores, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, B1650KNA, Argentina
Palabras clave:BFS method; Metallic nanocages; Nanoframes; Platinum; Atomistic modeling; BFS method; Critical temperatures; Monte carlo atomistic simulations; Nanocages; Nanoframes; Quantum methods; Structural factor; Monte Carlo methods
Año:2015
Volumen:98
Página de inicio:142
Página de fin:148
DOI: http://dx.doi.org/10.1016/j.commatsci.2014.11.003
Título revista:Computational Materials Science
Título revista abreviado:Comput Mater Sci
ISSN:09270256
CODEN:CMMSE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09270256_v98_n_p142_Fioressi

Referencias:

  • Hu, J., Chen, M., Fang, X.S., Wu, L.M., (2011) Chem. Soc. Rev., 40, p. 5472
  • Zhang, F., Shi, Y.F., Sun, X.H., Zhao, D.Y., Stucky, G.D., (2009) Chem. Mater., 21, p. 5237
  • Liu, J., Qiao, S.Z., Hartono, S.B., Lu, G.Q., (2010) Angew. Chem. Int. Ed., 49, p. 4981
  • Liu, J., Hartono, S.B., Jin, Y.G., Li, Z., Lu, G.Q., Qiao, S.Z., (2010) J. Mater. Chem., 20, p. 4595
  • Sun, Z., Kim, J.H., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., Kang, Y.M., Dou, S.X., (2011) J. Am. Chem. Soc., 133, p. 19314
  • Kreibig, U., Vollmer, M., (1995) Optical Properties of Metal Clusters Springer Series in Materials Science, 25, p. 125. , Springer Berlin
  • Bai, F., Sun, Z.C., Wu, H.M., Haddad, R.E., Xiao, X.Y., Fan, H.Y., (2011) Nano Lett., 11, p. 3759
  • Peng, Z.M., Wu, J.B., Yang, H., (2010) Chem. Mater., 22, p. 1098
  • Wang, J.X., Ma, C., Choi, Y.M., Su, D., Zhu, Y.M., Liu, P., Si, R., Adzic, R.R., (2011) J. Am. Chem. Soc., 133, p. 13551
  • Brigger, I., Dubernet, C., Couvreur, P., (2002) Adv. Drug Deliv. Rev., 54, p. 631
  • Huang, X., El-Sayed, I., Qian, W., El-Sayed, M.A., (2006) J. Am. Chem. Soc., 128, p. 2115
  • Hainfeld, J., Slatkin, D., Smilowitz, H., (2004) Phys. Med. Biol., 49, p. 309
  • Wu, D., Zhang, X., Liu, P., Zhang, L., Fan, F., Guo, M., (2011) Curr. Nanosci., 7, p. 110
  • Murphy, C., Gole, A., Stone, J., Sisco, P., Alkilany, A., Goldsmith, E., Baxter, S., (2008) Acc. Chem. Res., 41, p. 1721
  • Zhang, X.D., Wu, H.Y., (2010) Int. J. Nanomed., 5, p. 771
  • Zhang, X.D., Guo, M.L., Wu, H.Y., Sun, Y.M., Ding, Y.Q., Feng, X., Zhang, L.A., (2009) Int. J. Nanomed., 4, p. 165
  • Sun, Y.G., Xia, Y.N., (2002) Science, 298, p. 2176
  • Lu, X., Au, L., McLellan, J., Li, Z.-Y., Marquez, M., Xia, Y., (2007) Nano Lett., 7, p. 1764
  • Au, L., Chen, Y., Zhou, F., Camargo, P.H.C., Lim, B., Li, Z.-Y., Ginger, D.S., Xia, Y., (2008) Nano Res., 1, p. 441
  • Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, L.M., Xia, Y., (2008) Acc. Chem. Res., 41, p. 1587
  • Rycenga, M., Wang, Z., Gordon, E., Cobley, C., Schwartz, A.G., Lo, C.S., Xia, Y., (2009) Angew. Chem. Int. Ed. Engl., 48, p. 9924
  • Mahmoud, M.A., El-Sayed, M.A., (2012) Langmuir, 28, p. 4051
  • Wu, R., Qing-Cheng, K., Chenglin, F., Shi-Qin, L., Cui, Y., Jian-Yu, L., Yongxiang, C., Jian-Qiang, H., (2013) RSC Adv., 3, p. 12577
  • Moon, G.D., Choi, S.W., Cai, X., Li, W., Cho, E.C., Jeong, U., Wang, L.V., Xia, Y., (2011) J. Am. Chem. Soc., 133, p. 4762
  • Chen, J., Wiley, B., Li, Z.Y., Campbell, D., Saeki, F., Cang, H., Xia, Y., (2005) Adv. Mater., 17, p. 2255
  • Jain, P.K., Huang, X., El-Sayed, I.H., El-Sayed, M.A., (2008) Acc. Chem. Res., 41, p. 1578
  • Mahmoud, M.A., Narayanan, R., El-Sayed, M.A., (2013) Acc. Chem. Res., 46, p. 1795
  • Zhang, H., Jin, M., Liu, H., Wang, J., Kim, M.J., Yang, D., Xie, Z., Xia, Y., (2011) ACS Nano, 5, p. 8212
  • Ji, C., Park, H.S., (2007) Nanotechnology, 18, p. 115707
  • Shu, Q., Yang, Y., Zhai, Y.T., Sun, D.Y., Xianga, H.J., Gong, X.G., (2012) Nanoscale, 4, p. 6307
  • Kang, J.W., Seo, J.J., Hwang, H.J., (2002) J. Phys.: Condens. Matter, 14, p. 8997
  • Enyashin, A.N., Ivanovskii, A.L., (2007) J. Mol. Struct.: THEOCHEM, 822, p. 28
  • Delogu, F., (2008) J. Phys. Chem. C, 112, p. 11135
  • Jiang, S., Zhang, H., Zheng, Y., Chen, Z., (2009) J. Phys. D: Appl. Phys., 42, p. 135408
  • Jiang, S., Zhang, Y., Gan, Y., Chen, Z., Peng, H.S., (2013) J. Phys. D: Appl. Phys., 46, p. 335302
  • Delogu, F., (2008) J. Phys. Chem. A, 112, p. 2863
  • Bozzolo, G., Ferrante, J., Smith, J.R., (1992) Phys. Rev. B, 45, p. 493
  • Bozzolo, G., Garcés, J.E., The chemical physics of solid surfaces (2002) Surface Alloys and Alloy Surfaces, 10, p. 30. , D.P. Woodruff, Elsevier New York
  • Wilson, A., Bozzolo, G., Noebe, R.D., Howe, J.M., (2002) Acta Mater., 50, p. 2787
  • Bozzolo, G., Garcés, J.E., Noebe, R.D., Farías, D., (2003) Nanotechnology, 14, p. 939
  • Pint, C., Bozzolo, G., Hauge, R., (2008) Nanotechnology, 19, p. 405704
  • Negreiros Ribeiro, F., Avellar Soares, E., De Carvalho, V.E., Bozzolo, G., (2007) Phys. Rev. B, 76, p. 245432
  • Zink, A., Bozzolo, G., Mosca, H.O., (2012) Int. J. Nanosci., 11, p. 1250011
  • Kara, D.C., Drexel, M.S., Bozzolo, G., Mosca, H.O., (2010) Int. J. Nanosci., 9, p. 413
  • Smith, J., Perry, T., Banerjea, A., Ferrante, J., Bozzolo, G., (1991) Phys. Rev. B, 44, p. 6444
  • Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J., WIEN2K (2001) An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, , K. Schwarz, Techn. Universität Wien Wien
  • Bozzolo, G., Khalil, J., Noebe, R.D., (2002) Comput. Mater. Sci., 24, p. 457
  • Bozzolo, G., Noebe, R.D., Ferrante, J., Amador, C., (1999) J. Comput. Aided Mater. Des., 6, p. 1

Citas:

---------- APA ----------
Fioressi, S.E., Bacelo, D.E., Bozzolo, G., Mosca, H.O. & Del Grosso, M.F. (2015) . Atomistic modeling of Ag, Au, and Pt nanoframes. Computational Materials Science, 98, 142-148.
http://dx.doi.org/10.1016/j.commatsci.2014.11.003
---------- CHICAGO ----------
Fioressi, S.E., Bacelo, D.E., Bozzolo, G., Mosca, H.O., Del Grosso, M.F. "Atomistic modeling of Ag, Au, and Pt nanoframes" . Computational Materials Science 98 (2015) : 142-148.
http://dx.doi.org/10.1016/j.commatsci.2014.11.003
---------- MLA ----------
Fioressi, S.E., Bacelo, D.E., Bozzolo, G., Mosca, H.O., Del Grosso, M.F. "Atomistic modeling of Ag, Au, and Pt nanoframes" . Computational Materials Science, vol. 98, 2015, pp. 142-148.
http://dx.doi.org/10.1016/j.commatsci.2014.11.003
---------- VANCOUVER ----------
Fioressi, S.E., Bacelo, D.E., Bozzolo, G., Mosca, H.O., Del Grosso, M.F. Atomistic modeling of Ag, Au, and Pt nanoframes. Comput Mater Sci. 2015;98:142-148.
http://dx.doi.org/10.1016/j.commatsci.2014.11.003