Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The inversion of surface-wave phase-velocity dispersion curves provides a reliable method to derive near-surface shear-wave velocity profiles. In this work, we invert phase-velocity dispersion curves estimated from 2D seismic-reflection data. These data cannot be used to image the first 50 m with seismic-reflection processing techniques due to the presence of indistinct first breaks and significant NMO-stretching of the shallow reflections. A surface-wave analysis was proposed to derive information about the near surface in order to complement the seismic-reflection stacked sections, which are satisfactory for depths between 50 and 700 m. In order to perform the analysis, we had to overcome some problems, such as the short acquisition time and the large receiver spacing, which resulted in severe spatial aliasing. The analysis consists of spatial partitioning of each line in segments, picking of the phase-velocity dispersion curves for each segment in the f-k domain, and inversion of the picked curves using the neighborhood algorithm. The spatial aliasing is successfully circumvented by continuously tracking the surface-wave modal curves in the f-k domain. This enables us to sample the curves up to a frequency of 40 Hz, even though most components beyond 10 Hz are spatially aliased. The inverted 2D VS sections feature smooth horizontal layers, and a sensitivity analysis yields a penetration depth of 20–25 m. The results suggest that long profiles may be more efficiently surveyed by using a large receiver separation and dealing with the spatial aliasing in the described way, rather than ensuring that no spatially aliased surface waves are acquired. © 2018 Elsevier B.V.

Registro:

Documento: Artículo
Título:Retrieving shallow shear-wave velocity profiles from 2D seismic-reflection data with severely aliased surface waves
Autor:Onnis, L.E.; Osella, A.; Carcione, J.M.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, Buenos Aires, Argentina
CONICET, Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, Buenos Aires, Argentina
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42C, Sgonico, Trieste 34010, Italy
Palabras clave:MASW; Neighborhood algorithm; Shear-wave velocity; Spatial aliasing; Surface waves; Acoustic wave velocity; Dispersion (waves); Phase velocity; Seismic waves; Seismology; Sensitivity analysis; Shear waves; Surface waves; MASW; Neighborhood algorithm; Phase-velocity dispersions; Shear wave velocity; Spatial aliasing; Spatial partitioning; Surface-wave analysis; Wave phase velocities; Shear flow; algorithm; seismic data; seismic migration; seismic reflection; spatial analysis; surface wave; two-dimensional modeling; velocity profile; wave velocity
Año:2019
Volumen:161
Página de inicio:15
Página de fin:25
DOI: http://dx.doi.org/10.1016/j.jappgeo.2018.11.014
Título revista:Journal of Applied Geophysics
Título revista abreviado:J. Appl. Geophys.
ISSN:09269851
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09269851_v161_n_p15_Onnis

Referencias:

  • Bergamo, P., Boiero, D., Socco, L.V., Retrieving 2D structures from surface-wave data by means of space-varying spatial windowing (2012) Geophysics, 77, pp. EN39-EN51
  • Carcione, J.M., De La Vega, M., Gei, D., Osella, A., Picotti, S., Tassone, A., Poscolieri, M., Seismic characterization of the quaternary sediments at Llancanelo-Lake area (2013) Argentina. J. Seism. Explor., 22, pp. 1-17
  • Dal Moro, G., Pipan, M., Forte, E., Finetti, I., Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments (2003) SEG Tech. Progr. Expand. Abstr., pp. 1247-1250
  • Dunkin, J.W., Computation of modal solutions in layered, elastic media at high frequencies (1965) Bull. Seismol. Soc. Am., 55, pp. 335-358
  • Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.Y., Comina, C., Socco, V., Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project (2018) Bull. Earthq. Eng., 16, pp. 2367-2420
  • Grandjean, G., Bitri, A., 2M-SASW: Multifold multichannel seismic inversion of local dispersion of Rayleigh waves in laterally heterogeneous subsurfaces: Application to the Super-Sauze earthflow, France (2006) Near Surf. Geophys., 4, pp. 367-375
  • Ivanov, J., Miller, R.D., Tsoflias, G., Some practical aspects of MASW analysis and processing (2008) Symp. Appl. Geophys. to Eng. Environ. Probl., (2008), pp. 1186-1198
  • de la Vega, M., Lopez, E., Osella, A., Rovere, E.I., Violante, R.A., Quaternary volcanic-sedimentary sequences and evolution of the Llancanelo Lake region (Southern Mendoza, Western Argentina) evidenced from geoelectric methods (2012) J. S. Am. Earth Sci., 40, pp. 116-128
  • Lontsi, A.M., Ohrnberger, M., Kruger, F., Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays (2016) J. Appl. Geophys., 130, pp. 37-52
  • Luo, Y., Xia, J., Liu, J., Xu, Y., Liu, Q., Research on the middle-of-receiver-spread assumption of the MASW method (2009) Soil Dyn. Earthq. Eng., 29, pp. 71-79
  • McMechan, G.A., Yedlin, M.J., Analysis of dispersive waves by wave field transformation (1981) Geophysics, 46, pp. 869-874
  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Equation of state calculations by fast computing machines (1953) J. Chem. Phys., 21, pp. 1087-1092
  • Nazarian, S., (1984), In Situ determination of elastic moduli of soil deposits and pavement systems by spectral-analysis-of-surface-waves method. PhD Dissertation, The University of Texas, Austin; Nazarian, S., Stokoe, K.H., II, In situ shear wave velocities from spectral analysis of surface waves (1984) 8th Conference on Earthquake Engineering, San Francisco, CA, July 21–28, pp. 31-38
  • Neducza, B., Stacking of surface waves (2007) Geophysics, 72, pp. V51-V58
  • Onnis, L., Violante, R.A., Osella, A., De la Vega, M., Tassone, A., López, E., Neogene-Quaternary seismic stratigraphy of the Llancanelo Lake Basin, Mendoza, Argentina (2017) Andean Geol., 45, p. 35
  • Osella, A., Onnis, L., de la Vega, M., Tassone, A., Violante, R.A., Lippai, H., López, E., Rovere, E.I., Seismic reflection survey at Llancanelo region (Mendoza, Argentina) and preliminary interpretation of Neogene stratigraphic features (2015) J. S. Am. Earth Sci., 60, pp. 71-81
  • Pamuk, E., Akgün, M., Özdağ, Ö.C., Gönenç, T., 2D soil and engineering-seismic bedrock modeling of eastern part of Izmir inner bay/Turkey (2017) J. Appl. Geophys., 137, pp. 104-117
  • Park, C.B., Miller, R.D., Xia, J., Imaging Dispersion Curves of Surface Waves on Multi-Channel Record, in: SEG Technical Program Expanded Abstracts 1998 (1998), pp. 1377-1380; Park, C.B., Miller, R.D., Xia, J., Multichannel analysis of surface waves (1999) Geophysics, 64, pp. 800-808
  • Pasquet, S., Bodet, L., SWIP: an integrated workflow for surface-wave dispersion inversion and profiling (2017) Geophysics, 82, pp. WB47-WB61
  • Rosa-Cintas, S., Galiana-Merino, J.J., Rosa-Herranz, J., Molina, S., Giner-Caturla, J., Suitability of 10 Hz vertical geophones for seismic noise array measurements based on frequency-wavenumber and extended spatial autocorrelation analyses (2013) Geophys. Prospect., 61, pp. 183-198
  • Sajeva, A., Aleardi, M., Galuzzi, B., Stucchi, E., Spadavecchia, E., Mazzotti, A., Comparing the performances of four stochastic optimisation methods using analytic objective functions, 1D elastic full-waveform inversion, and residual static computation (2017) Geophys. Prospect., 65, pp. 322-346
  • Sambridge, M., Geophysical inversion with a neighbourhood algorithm - I. Searching a parameter space (1999) Geophys. J. Int., 138, pp. 479-494
  • Sambridge, M., Geophysical inversion with a neighbourhood algorithm-II. Appraising the ensemble (1999) Geophys. J. Int., 138, pp. 727-746
  • Sambridge, M., Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm (2001) Inverse Probl., 17, pp. 387-403
  • Sánchez-Salinero, I., Analytical investigation of seismic methods used for engineering applications (1987), PhD Dissertation The University of Texas Austin; Sen, M.K., Stoffa, P.L., Global Optimization Methods in Geophysical Inversion, Global Optimization Methods in Geophysical Inversion (2013), Second Edition Cambridge University Press Cambridge; Socco, L.V., Boiero, D., Improved Monte Carlo inversion of surface wave data (2008) Geophys. Prospect., 56, pp. 357-371
  • Socco, L.V., Boiero, D., Foti, S., Wisén, R., Laterally constrained inversion of ground roll from seismic reflection records (2009) Geophysics, 74, pp. G35-G45
  • Socco, L.V., Boiero, D., Foti, S., Piatti, C., Seismic body and surface wave data integration for near surface characterisation, in: 72nd European Association of Geoscientists and Engineers Conference and Exhibition Incorporating SPE EUROPEC 2010 (2010) Workshops, 183-187
  • Strobbia, C., Foti, S., Multi-offset phase analysis of surface wave data (MOPA) (2006) J. Appl. Geophys., 59, pp. 300-313
  • Strobbia, C., Laake, A., Vermeer, P., Glushchenko, A., Surface waves: use them then lose them. Surface-wave analysis, inversion and attenuation in land reflection seismic surveying (2011) Near Surf. Geophys., 9, pp. 503-513
  • Tokimatsu, K., Geotechnical site characterization using surface waves (1995) Proceedings of 1st International Conference on Earthquake Geotechnical Engineering, Vol. 3, Tokyo, Japan, November 14–16, pp. 1333-1368
  • Wathelet, M., An improved neighborhood algorithm: Parameter conditions and dynamic scaling (2008) Geophys. Res. Lett., 35
  • Wathelet, M., Jongmans, D., Ohrnberger, M., Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements (2004) Near Surf. Geophys., 2, pp. 211-221
  • Xia, J., Miller, R.D., Park, C.B., Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves (1999) Geophysics, 64, pp. 691-700
  • Xia, J., Miller, R.D., Park, C.B., Ivanov, J., Construction of 2D vertical shear-wave velocity field by the multichannel analysis of surface wave technique (2000) Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp. 1197-1206
  • Yilmaz, Ö., Seismic data analysis (2001) Soc. Explor. Geophys., 10

Citas:

---------- APA ----------
Onnis, L.E., Osella, A. & Carcione, J.M. (2019) . Retrieving shallow shear-wave velocity profiles from 2D seismic-reflection data with severely aliased surface waves. Journal of Applied Geophysics, 161, 15-25.
http://dx.doi.org/10.1016/j.jappgeo.2018.11.014
---------- CHICAGO ----------
Onnis, L.E., Osella, A., Carcione, J.M. "Retrieving shallow shear-wave velocity profiles from 2D seismic-reflection data with severely aliased surface waves" . Journal of Applied Geophysics 161 (2019) : 15-25.
http://dx.doi.org/10.1016/j.jappgeo.2018.11.014
---------- MLA ----------
Onnis, L.E., Osella, A., Carcione, J.M. "Retrieving shallow shear-wave velocity profiles from 2D seismic-reflection data with severely aliased surface waves" . Journal of Applied Geophysics, vol. 161, 2019, pp. 15-25.
http://dx.doi.org/10.1016/j.jappgeo.2018.11.014
---------- VANCOUVER ----------
Onnis, L.E., Osella, A., Carcione, J.M. Retrieving shallow shear-wave velocity profiles from 2D seismic-reflection data with severely aliased surface waves. J. Appl. Geophys. 2019;161:15-25.
http://dx.doi.org/10.1016/j.jappgeo.2018.11.014