Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A large amount of hydrocarbon reservoirs in the world are in the secondary recovery stage and improving this step in the exploitation of these reservoirs would greatly benefit the oil industry. Secondary recovery involves injecting brine in some wells in order to maintain reservoir pressure. The injected water moves mainly through the channels with higher permeability of the reservoir rock. The identification of these channels would allow the development of technical strategies to close them. In this context, the ability to detect brine flow pathways after injection is a goal of this work. Given the high electrical conductivity of brine, the use of geoelectrical methods can be useful to detect and monitor flow evolution. The limitations in the application of this method are due to the characteristics of the target: a very conductive fluid is usually contained in paths with dimensions that are much smaller than the depth at which it is located. Therefore, our objective is to overcome these constraints in order to find the strategies required to successfully detect and eventually monitor the movement of brine flowing from injection wells. In this work, we studied the feasibility of detecting brine in an oil reservoir with surface-downhole electrical measurements. To achieve this, we designed an electrical model of the reservoir from well data and numerically simulated the forward geoelectrical response to determine the conditions under which the anomaly, i.e., the accumulation of brine, can be identified. Our results show that once the initial location of the brine is known, by installing potential electrodes in a single well the direction of brine migration can be determined, even in unfavorable conditions with relatively few surface measurements. In the case of a well equipped with permanent electrodes, this could be an efficient method to monitor the evolution of the brine plume. © 2015 Elsevier B.V.

Registro:

Documento: Artículo
Título:Numerical simulation of surface-downhole geoelectrical measurements in order to detect brine plumes
Autor:Bongiovanni, M.V.; Grünhut, V.; Osella, A.; Tichno, A.
Filiación:Facultad de Ingeniería, Universidad Austral/CONICET, Buenos Aires, Argentina
Departamento de Matemática y Ciencias, Universidad de San Andrés/CONICET, Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA/CONICET, Buenos Aires, Argentina
INLAB S.A., Buenos Aires, Argentina
Palabras clave:Borehole; Geoelectrical; Reservoir; Surface-downhole; Boreholes; Electrodes; Flowing wells; Oil shale; Oil wells; Petroleum reservoirs; Reservoirs (water); Secondary recovery; Surface measurement; Water injection; Downholes; Electrical measurement; Electrical modeling; Geoelectrical; Geoelectrical methods; High electrical conductivity; Hydrocarbon reservoir; Reservoir pressures; Petroleum reservoir engineering; borehole geophysics; brine; computer simulation; detection method; flow pattern; fluid injection; geoelectric field; hydrocarbon reservoir; numerical model; plume
Año:2015
Volumen:116
Página de inicio:215
Página de fin:223
DOI: http://dx.doi.org/10.1016/j.jappgeo.2015.03.013
Título revista:Journal of Applied Geophysics
Título revista abreviado:J. Appl. Geophys.
ISSN:09269851
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09269851_v116_n_p215_Bongiovanni

Referencias:

  • (2009), http://www.simulia.com, DassaultSystèmesSimulia Corp., Rising Sun Mills, 166 Valley Street, Providence, RI, USA; Archie, G.E., The electrical resistivity log as an aid in determining some reservoir characteristics (1942) Petrol. Trans. AIME, 146, pp. 54-62
  • Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., Rücker, C., Labitzke, T., Henninges, J., Baumann, G., Schütt, H., Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany (2012) Geophysics, 77 (6), pp. B253-B267
  • Binley, A., Henry-Poulter, S., Shaw, B., Examination of solute transport in an undisturbed soil column using electrical resistance tomography (1996) Water Resour. Res., 32, pp. 763-769
  • Binley, A., Cassiani, G., Middleton, R., Winship, P., Vadose zone flow parameterization using cross-borehole radar and resistivity imaging (2002) J. Hydrol., 267, pp. 147-159
  • Bongiovanni, M.V., Osella, A., De la Vega, M., Tichno, A., Detection of brine plumes in an oil reservoir using the geolectric method (2013) J. Geophys. Eng., 10, p. 045006
  • Cassiani, G., Bruno, V., Villa, A., Fusi, N., Binley, A., A saline trace test monitored via time-lapse surface electrical resistivity tomography (2006) J. Appl. Geophys., 59, pp. 244-259
  • Daily, W., Ramirez, A., Binley, A., LaBrecque, D., Electrical resistance tomography (2004) Lead. Edge, 23 (5), pp. 438-442
  • Kemna, A., Vanderborght, J., Kulessa, B., Vereecken, H., Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models (2002) J. Hydrol., 267, pp. 125-146
  • Monego, M., Cassiani, G., Deiana, R., Putti, M., Passadore, G., Altissimo, L., A tracer test in a shallow heterogeneous aquifer monitored via time-lapse surface electrical resistivity tomography (2010) Geophysics, 75 (4), pp. WA61-WA73
  • Pepper, D.W., Heinrich, J.C., (1992) The Finite Element Method Basic Concepts and Applications, , CRC Press, Taylor & Francis Group, Bristol, PA
  • Perri, M.T., Cassiani, G., Gervasio, I., Deiana, R., Binley, A., A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: comparison of time-lapse results (2012) J. Appl. Geophys., 79, pp. 6-16
  • Picotti, S., Grünhut, V., Osella, A., Gei, D., Carcione, J., Sensitivity analysis from single-well ERT simulations to image CO2 migrations along wellbores (2013) Lead. Edge, 32, pp. 504-512
  • Prevedel, B., Wohlgemuth, L., Henninges, J., Krüger, K., Norden, B., Förster, A., The CO2SINK boreholes for geological storage testing (2008) Sci. Drill., 6, pp. 32-37
  • Robert, T., Caterina, D., Deceuster, J., Kaufmann, O., Nguyen, F., A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones (2012) Geophysics, 77 (2), pp. B55-B67
  • Ronczka, M., Günther, T., Rücker, C., Long electrode ERT for salt water monitoring-modelling, sensitivity and resolution (2013) Near Surface Geoscience, We P 06
  • Rucker, D.F., Fink, J.B., Loke, M.H., Environmental monitoring of leaks using time-lapsed long electrode electrical resistivity (2011) J. Appl. Geophys., 74 (4), pp. 242-254
  • Rucker, D.F., Crook, N., Winterton, J., McNeill, M., Baldyga, C.A., Noonan, G., Fink, J.B., Real-time electrical monitoring of reagent delivery during a subsurface amendment experiment (2014) Near Surf. Geophys., 12 (1), pp. 151-163
  • Schmidt-Hattenberger, C., Bergmann, P., Kesling, D., Krüger, K., Rücker, C., Scütt, H., Application of a vertical electrical resistivity array (VERA) for monitoring CO2 migration at the Ketzin site: first performance evaluation (2011) Energy Procedia, 4, pp. 3363-3370. , Ketzin Group
  • Serra, O., (1984) Fundamentals of Well-log Interpretation, 1. The Acquisition of Logging Data, p. 10. , Elsevier Science Publishers, Amsterdam, The Netherlands
  • Slater, L., Binley, A.M., Daily, W., Johnson, R., Cross-hole electrical imaging of a controlled saline tracer injection (2000) J. Appl. Geophys., 44, pp. 85-102
  • Telford, W.M., Geldart, L.P., Sheriff, R.E., (1990) Applied Geophysics, p. 648. , Cambridge University Press, New York
  • Wilkinson, P.B., Meldrum, P.I., Kuras, O., Chambers, J.E., Holyoake, S.J., Ogilvy, R.D., High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer (2010) J. Appl. Geophys., 70, pp. 268-276

Citas:

---------- APA ----------
Bongiovanni, M.V., Grünhut, V., Osella, A. & Tichno, A. (2015) . Numerical simulation of surface-downhole geoelectrical measurements in order to detect brine plumes. Journal of Applied Geophysics, 116, 215-223.
http://dx.doi.org/10.1016/j.jappgeo.2015.03.013
---------- CHICAGO ----------
Bongiovanni, M.V., Grünhut, V., Osella, A., Tichno, A. "Numerical simulation of surface-downhole geoelectrical measurements in order to detect brine plumes" . Journal of Applied Geophysics 116 (2015) : 215-223.
http://dx.doi.org/10.1016/j.jappgeo.2015.03.013
---------- MLA ----------
Bongiovanni, M.V., Grünhut, V., Osella, A., Tichno, A. "Numerical simulation of surface-downhole geoelectrical measurements in order to detect brine plumes" . Journal of Applied Geophysics, vol. 116, 2015, pp. 215-223.
http://dx.doi.org/10.1016/j.jappgeo.2015.03.013
---------- VANCOUVER ----------
Bongiovanni, M.V., Grünhut, V., Osella, A., Tichno, A. Numerical simulation of surface-downhole geoelectrical measurements in order to detect brine plumes. J. Appl. Geophys. 2015;116:215-223.
http://dx.doi.org/10.1016/j.jappgeo.2015.03.013