Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We describe a GPR methodology used to investigate the internal structure of three consecutive sections of the cylindrical pedestal of a monument that had to be disassembled for relocation. We acquired constant-offset circular profiles and non-standard variable-offset profiles at different heights along the pedestal. In the raw data sections, the reflections of interest were hidden by significant environmental noise with frequencies that overlapped those of the transmitted pulses and varied from trace to trace. We successfully eliminated the noise by iteratively fitting sinusoidal waves in different x-. t windows and by subtracting the results from the traces. The resulting sections were interesting because they exhibited numerous and varied reflections. We analysed these sections using a combination of procedures previously used for cylindrical structures and other procedures adapted from protocols commonly used for plane semi-spaces. In particular, we evaluated the information provided by the variable-offset profiles and determined how it complemented the information obtained from the constant-offset profiles. In the variable-offset profiles, multiple reflections produced at the cylinder-air interface were reliably distinguished up to the fifth-order of reflection by taking advantage of their distinctive shapes. In the constant-offset profiles, this information was used to distinguish the multiples from possible signals of internal structures or their multiples and from unwanted signals produced by the GPR system, which can be confused with the multiples. We also considered obtaining the propagation velocity across the structure with a high degree of reliability by including the travel times of higher-order multiples in the calculations. Fitting of the theoretical curves, migration and polar representations allowed for a thorough interpretation of the reflectors present in the structures. Probable reinforcement bars, circular ties, natural veins of the material and reflectors located in nearby sections of the monument were identified. The continuity of the reflectors along the pedestal was determined. On this basis, an efficient disassembly and relocation plan for the monument was designed and performed. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Ground-penetrating radar investigation of the cylindrical pedestal of a monument
Autor:Bonomo, N.; Bullo, D.; Villela, A.; Osella, A.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Cylindrical structure; GPR; Pedestal; Variable-offset circular profiles; Curve fitting; Geological surveys; Iterative methods; Reflection; Travel time; Circular profile; Cylindrical structure; Degree of reliability; Ground Penetrating Radar; Multiple reflections; Pedestal; Polar representation; Propagation velocities; Ground penetrating radar systems; cylinder; ground penetrating radar; monument; reinforcement; travel time; velocity profile
Año:2015
Volumen:113
Página de inicio:1
Página de fin:13
DOI: http://dx.doi.org/10.1016/j.jappgeo.2014.12.009
Título revista:Journal of Applied Geophysics
Título revista abreviado:J. Appl. Geophys.
ISSN:09269851
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09269851_v113_n_p1_Bonomo

Referencias:

  • Acharya, T., Ray, A., (2005) Image Processing: Principles and Applications, , John Wiley and Sons, New Jersey
  • Alani, A., Aboutalebi, M., Kilic, G., Applications of ground penetrating radar (GPR) in bridge deck monitoring and assessment (2013) J. Appl. Geophys., 97, pp. 45-54
  • Annan, A.P., Electromagnetic principles of ground penetrating radar (2009) Ground Penetrating Radar: Theory and Applications, , Elsevier, Amsterdam, H. Jol (Ed.)
  • Benedetto, A., A three dimensional approach for tracking cracks in bridges using GPR (2013) J. Appl. Geophys., 97, pp. 37-44
  • Butnor, J., Pruyn, M., Shaw, D., Harmon, M., Mucciardi, A., Ryan, M., Detecting defects in conifers with ground penetrating radar: applications and challenges (2009) For. Pathol., 39, pp. 309-322
  • Catapano, I., Di Napoli, R., Soldovieri, F., Bavusi, M., Loperte, A., Dumoulin, J., Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site (2012) J. Geophys. Eng., 9, pp. S100-S107
  • Daniels, D., Ground penetrating radar (2007) IET Radar, Sonar, Navigation and Avionics Series, 15. , (London)
  • Halabe, U., Pyakurel, S., 3D GPR imaging of wooden logs (2007) AIP Conf. Proc., 894, p. 695
  • Leucci, G., Cataldo, R., De Nunzio, G., Assessment of fractures in some columns inside the crypt of the Cattedrale di Otranto using integrated geophysical methods (2007) J. Archaeol. Sci., 34, pp. 222-232
  • Leucci, G., Persico, R., Soldovieri, F., Detection of fractures from GPR data: the case history of the Cathedral of Otranto (2007) J. Geophys. Eng., 4, pp. 452-461
  • Masini, N., Persico, R., Rizzo, E., Calia, A., Giannotta, M.T., Quarta, G., Pagliuca, A., Integrated techniques for analysis and monitoring of historical monuments: the case of San Giovanni al Sepolcro in Brindisi, southern Italy (2010) Near Surf. Geophys., 8, pp. 423-432
  • Miller, W., Doolittle, J., The application of ground-penetrating radar to detection of internal defect in standing trees (1990) Proceedings of the 7th International Nondestructive Testing of Wood Symposium, September 27-29, 1990, pp. 263-274. , Washington State University, Pullman, Washington
  • Nicolotti, G., Socco, L.V., Martinis, R., Godio, A., Sambuelli, L., Application and comparison of three tomographic techniques for detection decay in trees (2003) J. Arboric., 29, pp. 66-78
  • Nuzzo, L., Quarta, T., GPR prospecting of cylindrical structures in cultural heritage applications: a review of geometric issues (2012) Near Surf. Geophys., 10, pp. 17-34
  • Pyakurel, S., Halabe, U., 2D and 3D imaging of concrete fiber reinforced polymer composite wrapped cylindrical columns using ground penetrating radar (2013) Mater. Eval., 71 (1), pp. 73-82
  • Radzevicius, S.J., Clark, B.T., Herbst, D., Webster, T.T., Imaging columns with GPR (2004) Proceedings of the Tenth International Conference on Ground Penetrating Radar, GPR 2004 1, pp. 387-390
  • Saey, T., Delefortrie, S., Verdonck, L., De Smedt, P., Van Meirvenne, M., Integrating EMI and GPR data to enhance the three-dimensional reconstruction of a circular ditch system (2014) J. Appl. Geophys., 101, pp. 42-50
  • Sayed, A., Adaptive filters (2008) IEEE Computer Soc Pr, , John Wiley and Sons, New Jersey
  • Stryk, J., Matula, R., Pospisil, K., Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements (2013) J. Appl. Geophys., 97, pp. 11-26
  • Villela, A., Romo, J., Invariant properties and rotation transformations of the GPR scattering matrix (2013) J. Appl. Geophys., 90, pp. 71-81
  • Yilmaz, O., (2001) Seismic Data Analysis, , Society of Exploration Geophysicists, Tulsa, Oklahoma

Citas:

---------- APA ----------
Bonomo, N., Bullo, D., Villela, A. & Osella, A. (2015) . Ground-penetrating radar investigation of the cylindrical pedestal of a monument. Journal of Applied Geophysics, 113, 1-13.
http://dx.doi.org/10.1016/j.jappgeo.2014.12.009
---------- CHICAGO ----------
Bonomo, N., Bullo, D., Villela, A., Osella, A. "Ground-penetrating radar investigation of the cylindrical pedestal of a monument" . Journal of Applied Geophysics 113 (2015) : 1-13.
http://dx.doi.org/10.1016/j.jappgeo.2014.12.009
---------- MLA ----------
Bonomo, N., Bullo, D., Villela, A., Osella, A. "Ground-penetrating radar investigation of the cylindrical pedestal of a monument" . Journal of Applied Geophysics, vol. 113, 2015, pp. 1-13.
http://dx.doi.org/10.1016/j.jappgeo.2014.12.009
---------- VANCOUVER ----------
Bonomo, N., Bullo, D., Villela, A., Osella, A. Ground-penetrating radar investigation of the cylindrical pedestal of a monument. J. Appl. Geophys. 2015;113:1-13.
http://dx.doi.org/10.1016/j.jappgeo.2014.12.009