Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Experimental measurements by several techniques and density functional theory (DFT) calculations are combined to characterize Ce-Pr mixed oxides and deeply understand the influence of Pr dopant in their geometric and electronic structure, reducibility and catalytic behavior concerning the Water-gas Shift reaction (WGSR). Samples with nominal Pr dopant content of 0, 5, 15 and 50 at% (atomic percentage) are synthesized via urea decomposition method and subsequent calcination in air at 450 °C. X-ray diffraction characterization shows an increase of ceria lattice parameter for Pr loadings lower than 15 at%, which is consistent with a solid solution formation. X-ray photoelectron spectra indicate a surface enrichment in Pr cations and a diminution of Ce3+ surface concentration as Pr content increases. DFT calculations confirm the preferential reduction of Pr cations due to a single oxygen vacancy formation in Ce-Pr mixed oxides, and also a significant decrease in the energy needed for this O removal compare to that in pure CeO2. Both experimental measurements and DFT calculations evidence that the addition of Pr dopant to ceria promotes oxygen vacancies formation, redox properties and oxygen storage capacity (OSC). Even more, the same promoting effect of Pr in the WGSR intrinsic catalytic activity of Ce-Pr mixed oxides is observed. © 2014 Elsevier B.V.


Documento: Artículo
Título:Ce-Pr mixed oxides as active supports for Water-gas Shift reaction: Experimental and density functional theory characterization
Autor:Poggio-Fraccari, E.; Irigoyen, B.; Baronetti, G.; Mariño, F.
Filiación:ITHES, UBA-CONICET, Ciudad Universitaria, (1428) Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Ce-Pr mixed oxides; DFT calculations; Oxygen storage capacity; Water-gas Shift reaction; Catalyst activity; Density functional theory; Electronic structure; Oxygen; Oxygen vacancies; Positive ions; Urea; X ray diffraction; X ray photoelectron spectroscopy; DFT calculation; Mixed oxide; Oxygen storage capacity; Solid solution formation; Surface concentration; Water-gas shift reaction (WGS); Water-gas shift reactions; X ray photoelectron spectra; Water gas shift
Página de inicio:123
Página de fin:132
Título revista:Applied Catalysis A: General
Título revista abreviado:Appl Catal A Gen


  • Shchukin, D., Caruso, R., (2004) Chem. Mater., 16, pp. 2287-2292
  • Schermanz, K., Mining production, application and safety issues of cerium-based materials (2002) Catalysis by Ceria and Related Materials, pp. 1-15. , A. Trovarelli (Ed.) Imperial College Press, London
  • Smets, B., (1987) Mater. Chem. Phys., 16, pp. 283-299
  • Funabiki, M., Yamada, T., Kayano, K., (1991) Catal. Today, 10, pp. 33-43
  • Li, H., Lu, G., Wang, Y., Gou, Y., Gou, Y., (2010) Cat. Comm., 11, pp. 946-950
  • Su, E., Montreuil, C., Rothschild, W., (1985) App. Catal., 17, pp. 75-86
  • Colón, G., Valdivieso, F., Pijolat, M., Baker, R., Calvino, J., Bernal, S., (1999) Catal. Today, 50, pp. 271-284
  • Yue, B., Zhou, R., Wang, Y., Zheng, X., (2005) Appl. Cat. A: Gen., 295, pp. 31-39
  • Reddy, B., Katta, L., Thirmuthulu, G., (2010) Chem Mater., 22, pp. 467-475
  • Hartridge, A., Ghanashyam Krishna, M., Bhattacharya, A., (1999) Mater. Sci. Eng., 57, pp. 173-178
  • Tang, Y., Zhang, H., Cui, L., Ouyang, C., Shi, S., Tang, W., Li, H., Chen, L., (2010) Phys. Rev. B, 82, p. 125104. , 1-9
  • Ahn, K., Su Yoo, D., Hari Prasad, D., Lee, H.-W., Chung, Y.-Ch., Lee, J.-H., (2012) Chem. Mater., 24, pp. 4261-4267
  • Luo, M., Yan, Z., Jin, L., (2006) J. Mol. Cat. A: Chem., 260, pp. 157-162
  • Pu, Z., Liu, X., Jia, A., Xie, Y., Lu, J., Lou, M., (2008) J. Phys. Chem. C, 112, pp. 15045-15051
  • Malecka, M., Kepinski, L., Mista, W., (2007) Appl. Catal. B: Environ., 74, pp. 290-298
  • She, Y., Zheng, Q., Li, L., Zhan, Y., Chen, C., Zheng, Y., Ling, X., (2009) Int. J. Hydr. Energy, 34, pp. 8929-8936
  • Lin, J., Biswas, P., Guliants, V., Misture, S., (2010) Appl. Catal. A: Gen., 387, pp. 87-94
  • Poggio Fraccari, E., Mariño, F., Laborde, M., Baronetti, G., (2013) Appl. Catal. A: Gen., 460, pp. 15-20
  • Jobbagy, M., Mariño, F., Schonbrod, B., Baronetti, G., Laborde, M., (2006) Chem. Mater., 18, pp. 1945-1950
  • Poggio, E., Jobbágy, M., Moreno, M., Laborde, M., Mariño, F., Baronetti, G., (2001) Int. J. Hydr. Energy, 36, pp. 15899-15905
  • Romeo, M., Bak, K., El Fallah, J., Le Normand, F., Hilaire, L., (1993) Surf. Int. Sci., 20, pp. 508-512
  • Kresse, G., Furthmuller, J., (1996) Comput. Mater. Sci., 6, pp. 15-50
  • Kresse, G., Hafner, J., (1993) Phys. Rev. B, 47, pp. 558-561
  • Kresse, G., Joubert, D., (1999) Phys. Rev. B, 59, pp. 1758-1775
  • Perdew, J., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868
  • Monkhorst, H., Pack, J., (1976) Phys. Rev. B, 13, pp. 5188-5192
  • Dudarev, S., Botton, G., Savrasov, S., Humphreys, C., Sutton, A., (1998) Phys. Rev. B, 57, pp. 1505-1509
  • Anisimov, V., Zaanen, J., Andersen, O., (1991) Phys. Rev. B, 44, pp. 943-954
  • Nolan, M., Grigoleit, S., Sayle, D., Parker, S., Watson, G., (2005) Surf. Sci., 576, pp. 217-229
  • Li, H., Wang, H., Gong, X., Guo, Y., Guo, Y., Lu, G., Hu, P., (2009) Phys. Rev. B, 79, p. 193401. , 1-4
  • Castleton, C., Kullgren, J., Hermansson, K., (2007) J. Chem. Phys., 127, p. 244704. , 1-11
  • Nolan, M., Grigoleit, S., Sayle, D., Parker, S., Watson, G., (2005) Surf. Sci., 576, p. 217
  • Skorodumova, N.V., Baudin, M., Hermansson, K., (2004) Phys. Rev. B: Condens. Matter Mater. Phys., 69, p. 075401
  • Yang, Z.X., Woo, T.K., Baudin, M., Hermansson, K., (2004) J. Chem. Phys., 120, p. 7741
  • Lyons, D.M., McGrath, J.P., Morris, M.A., (2003) J. Phys. Chem. B, 107, p. 4607
  • Henkelman, G., Arnaldsson, A., Jónsson, H., (2006) Comput. Mater. Sci., 36, pp. 354-360
  • Jobbagy, M., Soler Illia, G., Regazzoni, A., Blesa, M., (1998) Chem. Mater., 10, pp. 1632-1637
  • Soler-Illia, G., Candal, R., Regazzoni, A., Blesa, E., (1997) Chem. Mater., 9, pp. 184-191
  • Rorif, F., Fuger, J., Desreaux, J., (2005) Radiochim. Acta, 93, pp. 103-110
  • Jobbágy, M., Sorbello, C., Sileo, E., (2009) J. Phys. Chem. C, 113, pp. 10853-10857
  • Somacescu, S., Parvulescu, V., Calderon-Moreno, J., Suh, S., Osiceanu, P., Su, B., (2012) J. Nanopart. Res., 14, pp. 885-1002
  • Zhang, Y., Han, K., Yin, X., Fang, Z., Xu, Z., Zhu, W., (2009) J. Cryst. Growth, 311, pp. 3883-3888
  • Tok, A., Du, S., Boey, F., Chong, W., (2007) Mater. Sci. Eng. A, 466, pp. 223-229
  • Rojas, T., Ocaña, M., (2002) Scr. Mater., 46, pp. 655-660
  • Reddy, B., Thrimurthulu, G., Katta, L., (2009) J. Phys. Chem. C, 113, pp. 15882-15890
  • Song, Z., Liu, W., Nishiguchi, H., Takami, A., Nagaoka, K., Takita, Y., (2007) Appl. Catal. A: Gen., 329, pp. 86-92
  • Ryan, K., McGrath, J., Farrel, R., O'Neill, W., Barnes, C., Morris, M., (2003) J. Phys.: Condens. Mater., 15, pp. 49-L58
  • Kim, D., (1989) J. Am. Ceram. Soc., 72, pp. 1415-1421
  • Tsunekawa, S., Sivamohan, R., Ito, S., Kasuya, A., Fukuda, T., (1999) Nano. Mater., 11, pp. 141-147
  • Hong, S., Virkar, A., (1995) J. Am. Ceram. Soc., 78, pp. 433-439
  • Glushkova, V., Hanic, F., Sazonova, L., (1978) Ceramurgia Int., 4, pp. 176-178
  • Zhang, T., Li, J., Li, H., Li, Y., Shen, W., (2009) Catal. Today, 148, pp. 179-183
  • Wu, Z., Li, M., Overbury, S., (2012) J. Catal., 285, pp. 61-73
  • Wang, H., Lu, C., (2002) Mater. Res. Bull., 37, pp. 783-792
  • Zaki, M., Hussein, G., Mansour, S., Ismail, H., Mekhemmer, G., (1997) J. Colloids Surf., 127, pp. 47-56
  • Bensalem, A., Bozon-Verduraz, F., Delamar, M., Bugli, G., (1995) Appl. Catal. A: Gen., pp. 81-93
  • Pu, Z., Lu, J., Luo, M., Xie, Y., (2007) J. Phys. Chem. C, 111, pp. 18695-18702
  • Mc Bride, J., Hass, K., Poindexter, B., Weber, W., (1994) J. Appl. Phys., 76, pp. 2435-2441
  • Fang, P., Luo, M., Lu, J., Cen, S., Yan, X., Wang, X., (2008) Thermochim. Acta, 478, pp. 50-54
  • Kosacki, I., Suzuki, T., Anderson, H., Colomban, P., (2002) Solid State Ionics, 149, pp. 99-105
  • Spanier, J., Robinson, R., Zhang, F., Chan, S., Herman, H., (2001) Phys. Rev. B, 64, pp. 245407-245515
  • Li, L., Chen, F., Lu, J., Luo, M., (2011) J. Phys. Chem. A, 115, pp. 7972-7977
  • Burroughs, P., Hamnett, A., Orchad, A., Thornton, G., (1976) J Chem. Soc. Dalton Trans., 17, pp. 1686-1698
  • Shyu, J., Weber, W., Gandhi, H., (1988) J. Phys. Chem., 92, pp. 4964-4970
  • Bart, T., Fries, C., Cariati, F., Bart, J., Giordano, N., (1983) J. Chem. Soc. Dalton Trans., 9, pp. 1825-1829
  • Leppelt, R., Schumacher, B., Plzak, V., Kinne, M., Behm, R., (2006) J. Catal., 244, pp. 137-152
  • Zhang, F., Wang, P., Koberstein, J., Khalid, S., Chan, S., (2004) Surf. Sci., 563, pp. 74-82
  • Laachir, A., Perrichon, V., Badri, A., Lamotte, J., Catherine, E., Lavalley, J., (1991) J. Chem. Soc. Faraday Trans., 87, pp. 1601-1609
  • Hofmann, S., Depth Profiling in AES and XPS (1996) Practical Surface Analysis, pp. 143-199. , D. Briggs, M. Seah, John Wiley & Sons New York
  • Thomas, J., Hofmann, S., (1984) J. Vac. Sci. Technol. A, 185, pp. 1921-1928
  • Seah, M., Quantification of AES and XPS (1996) Practical Surface Analysis, pp. 201-255. , D. Briggs, M. Seah, John Wiley & Sons New York
  • Hofmann, S., Sanz, J., (1984) Surf. Interf. Anal., 6, pp. 75-77
  • Ivanov, V., Scherbakov, A., Usatenko, A., (2009) Russian Chem. Rev., 78, pp. 855-871
  • Wu, L., Wiesmann, H., Moondenbaugh, A., Klie, R., Zhu, Y., Welch, D., Suenaga, M., (2004) Phys. Rev. B, 69, pp. 125415-125419
  • Rossignol, S., Descorme, C., Kappenstein, C., Duprez, D., (2001) J. Mater. Chem., 11, pp. 2587-2592
  • Hori, C., Permana, H., Simon Ng, K., Brenner, A., More, K., Rahmoeller, K., Betton, D., (1998) Appl. Catal. B: Environ., 16, pp. 105-117
  • Madier, Y., Descorme, C., Le Govic, A., Duprez, D., (1999) J. Phys. Chem., 103, pp. 10999-11006
  • Paier, J., Penschke, C., Sauer, J., (2013) Chem. Rev., 113, pp. 3949-3985
  • Tang, Y., Zhang, H., Cui, L., Ouyang, Ch., Shi, S., Tang, W., Li, H., Chen, L., (2010) Phys. Rev. B, 82, p. 125104
  • Bianconi, A., Kotani, A., Okada, K., Giorgi, R., Gargano, A., Marcelli, A., Miyahara, T., (1988) Phys. Rev. B, 38, p. 3433
  • Ogasawara, H., Kotani, A., Okada, K., Thole, B.T., (1991) Phys. Rev. B, 43, p. 854
  • Butorin, S.M., Duda, L.C., Guo, J.H., Wassdahl, N., Nordgren, J., Nakazawa, M., Kotani, A., (1997) J. Phys.: Condens. Matter., 9, p. 8155
  • Hartridge, A., Krishna, M.G., Bhattacharya, A.K., (1999) Mater. Sci. Eng. B, 57, p. 173
  • Skorodumova, N.V., Simak, S.I., Lundqvist, B.I., Abrikosov, I.A., Johansson, B., (2002) Phys. Rev. Lett., 89, p. 166601
  • Ganduglia-Pirovano, M., Da Silva, J.L., Sauer, J., (2009) Phys. Rev. Lett., 102, p. 026101
  • Long, R., Luo, J., Chen, M., Wan, H., (1997) Appl. Catal. A: Gen., 159, pp. 171-185
  • Lopez-Cartes, C., Bernal, S., Calvino, J., Cauqui, M., Blanco, G., Perez-Omil, J., Pintado, J., Hansen, P., (2003) Chem. Commun., 5, pp. 644-645
  • Li, Y., Fu, Q., Flytzani-Stephanopoulos, M., (2000) Appl. Catal. B: Environ., 27, pp. 179-191
  • Qi, X., Flytzani-Stephanopoulos, M., (2004) Ind. Eng. Chem. Res., 43, pp. 3055-3062
  • Cao, L., Ni, C., Yuan, Z., Wang, S., (2009) Cat. Comm., 10, pp. 1192-1195


---------- APA ----------
Poggio-Fraccari, E., Irigoyen, B., Baronetti, G. & Mariño, F. (2014) . Ce-Pr mixed oxides as active supports for Water-gas Shift reaction: Experimental and density functional theory characterization. Applied Catalysis A: General, 485, 123-132.
---------- CHICAGO ----------
Poggio-Fraccari, E., Irigoyen, B., Baronetti, G., Mariño, F. "Ce-Pr mixed oxides as active supports for Water-gas Shift reaction: Experimental and density functional theory characterization" . Applied Catalysis A: General 485 (2014) : 123-132.
---------- MLA ----------
Poggio-Fraccari, E., Irigoyen, B., Baronetti, G., Mariño, F. "Ce-Pr mixed oxides as active supports for Water-gas Shift reaction: Experimental and density functional theory characterization" . Applied Catalysis A: General, vol. 485, 2014, pp. 123-132.
---------- VANCOUVER ----------
Poggio-Fraccari, E., Irigoyen, B., Baronetti, G., Mariño, F. Ce-Pr mixed oxides as active supports for Water-gas Shift reaction: Experimental and density functional theory characterization. Appl Catal A Gen. 2014;485:123-132.