Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Lanthanide doped ZnO are interesting materials for optical and electrical applications. The wide band gap of this semiconductor makes it transparent in the visible range (Egap = 3.2 eV), allowing a sharp emission from intra shell transition from the lanthanides. From the electrical side, ZnO is a widely used material in varistors and its electrical properties can be tailored by the inclusion of lanthanides. Both applications are influenced by the location of the lanthanides, grain boundaries or lattice inclusion. Yb doped ZnO samples obtained by wet chemistry route were annealed at different temperatures and characterized by Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Rietveld refinement of XRD data, and X-ray Absorption Fine Structure (XAFS). These techniques allowed to follow the changes occurred in the matrix and the Yb environment. The use of the Cauchy continuous wavelet transform allowed identifying a second coordination shell composed of Zn atoms, supporting the observations from XRD Rietveld refinement and XAFS fittings. The information obtained confirmed the incorporation of Yb in Oh sites of the wurtzite structure without Yb2O3 clustering in the lattice. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Structural characterization and EXAFS wavelet analysis of Yb doped ZnO by wet chemistry route
Autor:Otal, E.H.; Sileo, E.; Aguirre, M.H.; Fabregas, I.O.; Kim, M.
Filiación:Division of Porous Materials, UNIDEF, CONICET, S.J.B de la Salle 4397, Villa Martelli, Buenos Aires, B1603ALO, Argentina
Laboratory for Materials Science and Technology, FRSC-UTN, Av. Inmigrantes 555, Río Gallegos, 9400, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Dept. of Physics Condensed Matter, University of Zaragoza, Spain
Laboratory of Advanced Microscopy (LMA), Institute of Nanoscience of Aragón (INA), University of Zaragoza, Spain
Palabras clave:EXAFS; Lanthanides doping; Optical materials; Precipitation; Semiconductor; Wavelet analysis; Precipitation (chemical); Semiconductor materials; Wavelet analysis; EXAFS; Structural characterization; Wet chemistry routes; Yb-doped; Optical materials
Año:2015
Volumen:622
Página de inicio:115
Página de fin:120
DOI: http://dx.doi.org/10.1016/j.jallcom.2014.09.186
Título revista:Journal of Alloys and Compounds
Título revista abreviado:J Alloys Compd
ISSN:09258388
CODEN:JALCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09258388_v622_n_p115_Otal

Referencias:

  • Schwartz, D.A., Norberg, N.S., Nguyen, Q.P., Parker, J.M., Gamelin, D.R., Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals (2003) J. Am. Chem. Soc., 125, pp. 13205-13218
  • Otal, E.H., Granada, M., Troiani, H.E., Cánepa, H., Walsöe De Reca, N.E., Nanostructured colloidal crystals from forced hydrolysis methods (2009) Langmuir, 25, pp. 9051-9056
  • Liu, B., Zeng, H.C., Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm (2003) J. Am. Chem. Soc., 125, pp. 4430-4431
  • Hartanto, A.B., Ning, X., Nakata, Y., Okada, T., Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume (2004) Appl. Phys. A, 78, pp. 299-301
  • Tang, Y., Chen, J., Greiner, D., Aeí, L., Baier, R., Lehmann, J., Sadewasser, S., Lux-Steiner, M.C., Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution (2011) J. Phys. Chem. C, 115, pp. 5239-5243
  • Wang, Y., Li, X., Lu, G., Quan, X., Chen, G., Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities (2008) J. Phys. Chem. C, 112, pp. 7332-7336
  • Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Yang, P., Room-temperature ultraviolet nanowire nanolasers (2001) Science, 292, pp. 1897-1899
  • Chen, L.-Y., Yin, Y.-T., Chen, C.-H., Chiou, J.-W., Influence of polyethyleneimine and ammonium on the growth of ZnO nanowires by hydrothermal method (2011) J. Phys. Chem. C, 115, pp. 20913-20919
  • Wang, D., Xing, G., Gao, M., Yang, L., Yang, J., Wu, T., Defects-mediated energy transfer in red-light-emitting Eu-doped ZnO nanowire arrays (2011) J. Phys. Chem. C, 115, pp. 22729-22735
  • Dai, Y., Zhang, Y., Li, Q.K., Nan, C.W., Synthesis and optical properties of tetrapod-like zinc oxide nanorods (2002) Chem. Phys. Lett., 358, pp. 83-86
  • Malandrino, G., Blandino, M., Fragala, M.E., Losurdo, M., Bruno, G., Relationship between nanostructure and optical properties of ZnO thin films (2008) J. Phys. Chem. C, 112, pp. 9595-9599
  • Tian, Z.R., Voigt, J.A., Liu, J., McKenzie, B., McDermott, M.J., Rodriguez, M.A., Konishi, H., Xu, H., Complex and oriented ZnO nanostructures (2003) Nat. Mater., 2, pp. 821-826
  • Han, Wang, Jie, Choy, W.C.H., Luo, Y., Yuk, T.I., Hou, J.G., Controllable synthesis and optical properties of novel ZnO cone arrays via vapor transport at low temperature (2005) J. Phys. Chem. B, 109, pp. 2733-2738
  • Wang, N., Cao, X., Wu, Q., Zhang, R., Wang, L., Yin, P., Guo, L., Hexagonal ZnO bipyramids: Synthesis, morphological evolution, and optical properties (2009) J. Phys. Chem. C, 113, pp. 21471-21476
  • Lupan, O., Viana, B., Pauporté, T., Dhaouadi, M., Pellé, F., Devys, L., Gacoin, T., Controlled mixed violet-blue-red electroluminescence from Eu:nano-phosphors/ZnO-nanowires/p-GaN light-emitting diodes (2013) J. Phys. Chem. C, 117, pp. 26768-26775
  • Valeyev, K.S., Knayazev, V.A., Drozdov, N.G., (1964) Elektrichestvo, 4, p. 72
  • Matsuoka, M., Nonohmic properties of zinc oxide ceramics (1971) Jpn. J. Appl. Phys., 10, p. 736
  • Sato, Y., Buban, J.P., Mizoguchi, T., Shibata, N., Yodogawa, M., Yamamoto, T., Ikuhara, Y., Role of Pr segregation in acceptor-state formation at ZnO grain boundaries (2006) Phys. Rev. Lett., 97, p. 106802
  • Jiang, N., Ye, S., Qiu, J., Electron energy-loss spectroscopy study of Yb doped ZnO (2010) J. Appl. Phys, 108
  • Kim, D.C., Han, W.S., Kong, B.H., Cho, H.K., Hong, C.H., Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition (2007) Physica B, 401-402, pp. 386-390
  • Zhang, X.-M., Lu, M.-Y., Zhang, Y., Chen, L.-J., Wang, Z.L., Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film (2009) Adv. Mater., 21, pp. 2767-2770
  • Bachir, S., Kossanyi, J., Sandouly, C., Valat, P., Ronfard-Haret, J.C., Electroluminescence of Dy3+ and Sm3+ ions in polycrystalline semiconducting zinc oxide (1995) J. Phys. Chem., 99, pp. 5674-5679
  • Ji, S., Yin, L., Liu, G., Zhang, L., Ye, C., Synthesis of rare earth ions-doped ZnO nanostructures with efficient host-guest energy transfer (2009) J. Phys. Chem. C, 113, pp. 16439-16444
  • Abdullah, M., Morimoto, T., Okuyama, K., Generating blue and red luminescence from ZnO/poly(ethylene glycol) nanocomposites prepared using an in-situ method (2003) Adv. Funct. Mater., 13, pp. 800-804
  • Armelao, L., Heigl, F., Jürgensen, A., Blyth, R.I.R., Regier, T., Zhou, X.T., Sham, T.K., X-ray excited optical luminescence studies of ZnO and Eu-doped ZnO nanostructures (2007) J. Phys. Chem. C, 111, pp. 10194-10200
  • Bachir, S., Azuma, K., Kossanyi, J., Valat, P., Ronfard-Haret, J.C., Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide (1997) J. Lumin., 75, pp. 35-49
  • Han, H.L., Yang, L.W., Liu, Y.X., Zhang, Y.Y., Yang, Q.B., Up-conversion luminescence switching in Er3+-containing ZnO nanoparticles through Li+ co-doping (2008) Opt. Mater., 31, pp. 338-341
  • Du, Y.-P., Zhang, Y.-W., Sun, L.-D., Yan, C.-H., Efficient energy transfer in monodisperse Eu-doped ZnO nanocrystals synthesized from metal acetylacetonates in high-boiling solvents (2008) J. Phys. Chem. C, 112, pp. 12234-12241
  • Stern, E.A., Sayers, D.E., Lytle, F.W., Extended X-ray-absorption fine-structure technique. III. Determination of physical parameters (1975) Phys. Rev. B, 11, pp. 4836-4846
  • Muñoz, M., Argoul, P., Farges, F., Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach (2003) Am. Mineral., 88, pp. 694-700
  • Funke, H., Chukalina, M., Scheinost, A.C., A new FEFF-based wavelet for EXAFS data analysis (2007) J. Synchrotron Radiat., 14, pp. 426-432
  • Timoshenko, J., Kuzmin, A., Wavelet data analysis of EXAFS spectra (2009) Comput. Phys. Commun., 180, pp. 920-925
  • Funke, H., Scheinost, A.C., Chukalina, M., Wavelet analysis of extended X-ray absorption fine structure data (2005) Phys. Rev. B, 71, p. 094110
  • Sahnoun, M., Daul, C., Haas, O., Wavelet investigation of La0.5Ca0.5CoO3-δ x-ray absorption data (2007) J. Appl. Phys., 101
  • Savinelli, R.O., Scott, S.L., Wavelet transform EXAFS analysis of mono- and dimolybdate model compounds and a Mo/HZSM-5 dehydroaromatization catalyst (2010) Phys. Chem. Chem. Phys., 12, pp. 5660-5667
  • Muñoz, M., Farges, F., Argoul, P., Continuous Cauchy wavelet transform of XAFS spectra (2005) Phys. Scr., 2005, p. 221
  • Toby, B., EXPGUI, a graphical user interface for GSAS (2001) J. Appl. Crystallogr., 34, pp. 210-213
  • Stephens, P., Phenomenological model of anisotropic peak broadening in powder diffraction (1999) J. Appl. Crystallogr., 32, pp. 281-289
  • Ravel, B., Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT (2005) J. Synchrotron Radiat., 12, pp. 537-541
  • Kim, H.K., Mathur, M., Thermally stable ZnO films deposited on GaAs substrates with a SiO2 thin buffer layer (1992) Appl. Phys. Lett., 61, pp. 2524-2526
  • Salah, N., Habib, S.S., Memic, A., Azam, A., Alarfaj, E., Zahed, N., Al-Hamedi, S., High-energy ball milling technique for ZnO nanoparticles as antibacterial material (2011) Int. J. Nanomed., 6, pp. 863-869
  • Armelao, L., Bottaro, G., Pascolini, M., Sessolo, M., Tondello, E., Bettinelli, M., Speghini, A., Structure-luminescence correlations in europium-doped sol-gel ZnO nanopowders (2008) J. Phys. Chem. C, 112, pp. 4049-4054
  • Otal, E.H., Yoon, S., Aguirre, M., Weidenkaff, A., Metastability of heavy lanthanides in the ZnO wurtzite structure (2011) J. Alloys Compd., 509, pp. 364-S366
  • Incoccia, L., Mobilio, S., Debye-Waller factors in R-space analysis (1983) EXAFS and Near Edge Structure, pp. 91-95. , A. Bianconi, L. Incoccia, S. Stipcich, Springer Berlin Heidelberg
  • D'Acapito, F., Francini, R., Pietrantoni, S., Barbier, D., The site of Er in phosphate glasses studied by K-edge EXAFS (2007) AIP Conf. Proc., 882, pp. 401-403
  • Philibert, J., (1991) Atom Movements: Diffusion and Mass Transport in Solids, , Editions de Physique
  • Hynes, A.P., Doremus, R.H., Siegel, R.W., Sintering and characterization of nanophase zinc oxide (2002) J. Am. Ceram. Soc., 85, pp. 1979-1987

Citas:

---------- APA ----------
Otal, E.H., Sileo, E., Aguirre, M.H., Fabregas, I.O. & Kim, M. (2015) . Structural characterization and EXAFS wavelet analysis of Yb doped ZnO by wet chemistry route. Journal of Alloys and Compounds, 622, 115-120.
http://dx.doi.org/10.1016/j.jallcom.2014.09.186
---------- CHICAGO ----------
Otal, E.H., Sileo, E., Aguirre, M.H., Fabregas, I.O., Kim, M. "Structural characterization and EXAFS wavelet analysis of Yb doped ZnO by wet chemistry route" . Journal of Alloys and Compounds 622 (2015) : 115-120.
http://dx.doi.org/10.1016/j.jallcom.2014.09.186
---------- MLA ----------
Otal, E.H., Sileo, E., Aguirre, M.H., Fabregas, I.O., Kim, M. "Structural characterization and EXAFS wavelet analysis of Yb doped ZnO by wet chemistry route" . Journal of Alloys and Compounds, vol. 622, 2015, pp. 115-120.
http://dx.doi.org/10.1016/j.jallcom.2014.09.186
---------- VANCOUVER ----------
Otal, E.H., Sileo, E., Aguirre, M.H., Fabregas, I.O., Kim, M. Structural characterization and EXAFS wavelet analysis of Yb doped ZnO by wet chemistry route. J Alloys Compd. 2015;622:115-120.
http://dx.doi.org/10.1016/j.jallcom.2014.09.186