Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bismuth-iron oxides with partial substitution of bismuth by yttrium, referred as (Bi1-xYx)FeO 3, were synthesized by simple-low cost acid-base co-precipitation method, which constitutes a difference with the currently used synthetic methods for obtaining BiFeO3-doped compounds (e.g. polymer assisted sol-gel, solid state, microwave, etc.) Samples were characterized by XRD, EDS, SEM, TEM, DSC and FTIR. The influence of yttrium (Y) substitution on magnetization curves of (Bi1-xYx)FeO3 powders were studied at room temperature by VSM. The particle size systematically decreases with the Y percentage. Ferromagnetic curves were obtained at room temperature for Y-percentage lower than 20% with relatively large values of the coercive field, Hc, which increases with Y-substitution, while for 20% yttrium a superparamagnetic behavior is observed. The electrical impedance of compressed disks were investigated also by impedance analysis in the range 1Hz-1MHz and the results were successfully fitted by a simple parallel R-C model. The dc-leakage currents are lower than previously reported for (Bi 1-xYx)FeO3 compounds and for most of the doped-BiFeO3 ceramics. As a difference with the influence on the magnetic behavior, the doping with yttrium does not seem to have a large influence on the dielectrical properties. These results suggest that magnetization can be systematically modified by the relatively simple co-precipitation synthesis while keeping invariable the dielectrical properties.© 2014 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Structural, dielectric and magnetic properties of Bi1 -xYxFeO3 (0 ≤ x ≤ 0.2) obtained by acid-base co-precipitation
Autor:Medina, L.M.S.; Jorge, G.A.; Martín Negri, R.
Filiación:Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Argentina
Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
Palabras clave:Bismuth-iron oxides; Impedance analysis; Magnetization; Multiferroic compounds; Yttrium substitution; Coprecipitation method; Coprecipitation synthesis; Dielectric and magnetic properties; Dielectrical properties; Impedance analysis; Magnetization curves; Multiferroics; Superparamagnetic behavior; Bismuth; Bismuth compounds; Coprecipitation; Electric impedance; Iron oxides; Leakage currents; Magnetization; Sol-gels; Yttrium; Yttrium compounds; Yttrium alloys
Año:2014
Volumen:592
Página de inicio:306
Página de fin:312
DOI: http://dx.doi.org/10.1016/j.jallcom.2013.12.243
Título revista:Journal of Alloys and Compounds
Título revista abreviado:J Alloys Compd
ISSN:09258388
CODEN:JALCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09258388_v592_n_p306_Medina

Referencias:

  • Shami, M.Y., Awan, S., Anis-Ur-Rehman, M., (2011) J. Alloys. Comp., 509, pp. 10139-10144
  • Mishra, R.K., Pradhan, D.K., Choudhary, R.N.P., Banerjee, A., (2008) J. Phys.: Condens. Matter, 20, p. 45218
  • Chauhan, S., Kumara, M., Chhoker, S., Katyal, S.C., Singh, H., Jewariya, M., Yadav, K.L., (2012) Solid State Commun., 152, pp. 525-529
  • Wang, D.H., Goh, W.C., Ning, M., Ong, C.K., (2006) Appl. Phys. Lett., 88, p. 212907
  • Xingquan Zhanga, Y.S., Wanga, X., Wangc, Y., Wanga, Z., (2010) J. Alloys. Comp., 507, pp. 157-161
  • Nalwa, K.S., Garg, A., Upadhyaya, A., (2008) Mater. Lett., 62, pp. 878-881
  • Azough, F., Freer, R., Thrall, M., Cernik, R., Tuna, F., Collison, D., (2010) J. Eur. Ceram. Soc., 30, pp. 727-736
  • Luo, L., Shen, K., Xu, Q., Zhou, Q., Wei, W., Gondal, M.A., (2013) J. Alloys. Comp., 558, pp. 73-76
  • Suresh, P., Srinath, S., (2013) J. Alloys Comp., 554, pp. 271-276
  • Dhir, G., Lotey, G.S., Uniyal, P., Verma, N.K., (2013) J. Mater. Sci. Mater. Electron., pp. 1-7
  • Uniyal, P., Yadav, K.L., (2008) Mater. Lett., 62, pp. 2858-2861
  • Bellaki, M.B., Manivannan, V., Madhu, C., Sundaresan, A., (2009) Mater. Chem. Phys., 116, pp. 599-602
  • Gautam, A., Uniyal, P., Yadav, K.L., Rangra, V.S., (2012) J. Phys. Chem. Solids, 73, pp. 188-192
  • José Luis Mietta, M.M.R., Antonel, P.S., Perez, O., Butera, A., Jorge, G., Martin Negri, R., (2012) Langmuir, 28, pp. 6985-6996
  • José, G.J., Mietta, L., Perez, O.E., Maeder, T., Martín Negri, R., (2013) Sens. Actuators A, 192, p. 34
  • Antonel, P.S., Jorge, G., Perez, O.E., Butera, A., Leyva, A.G., Negri, R.M., (2011) J. Appl. Phys., 110, p. 043920
  • Ruiz, M.M., Mietta, J.L., Antonel, P.S., Pérez, O.E., Negri, R.M., Jorge, G., (2013) J. Magn. Magn. Mater., 327, pp. 11-19
  • Butera, A., Álvarez, N., Jorge, G., Ruiz, M.M., Mietta, J.L., Negri, R.M., (2012) Phys. Rev. B, 86, p. 144424
  • Antonel, P.S., Negri, R.M., Leyva, A.G., Jorge, G.A., (2012) Phys. B: Condens. Matter, 407, pp. 3165-3167
  • Hua Ke, W.W., Wang, Y., Xu, J., Jia, D., Lu, Z., Zhou, Y., (2011) J. Alloys Comp, pp. 2192-2197
  • Chen, C.C.J., Yu, S., Che, L., Meng, Z., (2006) J. Cryst. Growth, 291, p. 135
  • Selbach, S.M., Einarsrud, M.-A., Tybell, T., Grande, T., (2007) J. Am. Ceram. Soc., 90, pp. 3430-3434
  • Karthik, A.S.T., Kamaraj, V., Chandrasekeran, V., (2012) Ceram. Int., 38, pp. 1093-1098
  • Kambiz Kalantari, I.S., Sinclair, D.C., Bingham, P.A., Pokorný, J., Reaney, I.M., (2012) J. Appl. Phys., 111, p. 064107
  • Hardy, A., Gielis, S., Rul, H.V.D., D'Haen, J., Bael, M.K.V., Mullens, J., (2009) J. Eur. Ceram. Soc., 29, pp. 3007-3013
  • Joseph, J., Mathew, V., Abraham, K.E., (2007) Chin. J. Phys., 45, pp. 84-97
  • Wang, Y., Xu, G., Ren, Z., Wei, X., Weng, W., Du, P., Shen, G., Han, G., (2008) Ceram. Int., 34, pp. 1569-1571
  • Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., Wong, S.S., (2007) Nano Lett., 7, pp. 766-772
  • Cai, W., Fu, C., Hu, W., Chen, G., Deng, X., (2013) J. Alloy. Comp., 554, pp. 64-71
  • Kumar, V., Gaur, A., Kotnala, R.K., (2013) J. Alloy. Comp., 551, pp. 410-414
  • Kadomtseva, A.M., Popov, Y.F., Pytakov, A.P., Vorob'Ev, G.P., Zvezdin, A.K., Viehlands, D., (2006) Phase Transitions, 79, pp. 1019-1042
  • Ederer, C., Spaldin, N.A., (2005) Phys. Rev. B, 71, p. 060401
  • Kaveh Ahadi, A.N., Mahdavi, S., (2012) Mater. Lett., 83, pp. 124-126
  • Shannigrahi, A.H.S.R., Tripathy, D., Adeyeye, A.O., (2008) J. Magn. Magn. Mater., 320

Citas:

---------- APA ----------
Medina, L.M.S., Jorge, G.A. & Martín Negri, R. (2014) . Structural, dielectric and magnetic properties of Bi1 -xYxFeO3 (0 ≤ x ≤ 0.2) obtained by acid-base co-precipitation. Journal of Alloys and Compounds, 592, 306-312.
http://dx.doi.org/10.1016/j.jallcom.2013.12.243
---------- CHICAGO ----------
Medina, L.M.S., Jorge, G.A., Martín Negri, R. "Structural, dielectric and magnetic properties of Bi1 -xYxFeO3 (0 ≤ x ≤ 0.2) obtained by acid-base co-precipitation" . Journal of Alloys and Compounds 592 (2014) : 306-312.
http://dx.doi.org/10.1016/j.jallcom.2013.12.243
---------- MLA ----------
Medina, L.M.S., Jorge, G.A., Martín Negri, R. "Structural, dielectric and magnetic properties of Bi1 -xYxFeO3 (0 ≤ x ≤ 0.2) obtained by acid-base co-precipitation" . Journal of Alloys and Compounds, vol. 592, 2014, pp. 306-312.
http://dx.doi.org/10.1016/j.jallcom.2013.12.243
---------- VANCOUVER ----------
Medina, L.M.S., Jorge, G.A., Martín Negri, R. Structural, dielectric and magnetic properties of Bi1 -xYxFeO3 (0 ≤ x ≤ 0.2) obtained by acid-base co-precipitation. J Alloys Compd. 2014;592:306-312.
http://dx.doi.org/10.1016/j.jallcom.2013.12.243