Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A procedure based on the mechanical properties of a modified anelastic element (MAE) has already been developed to get a functional dependence of the real and imaginary components of the dynamical modulus or compliance. The MAE is essentially a standard anelastic element except for its characteristic time, which depends on the frequency. The analysis of this dependence provides an analytical description of not only the dynamical properties but also the distribution function. In this work it is shown that the procedure can be extended to internal friction peaks, yielding not only the parameters of the distribution function but also the relaxation strength. This procedure is applied to various materials and the results are compared with a previous method proposed in the literature. © 1994.

Registro:

Documento: Artículo
Título:Relaxation strength and distribution function of an internal friction peak
Autor:Hermida, É.B.; Povolo, F.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Numerical methods; Relaxation processes; Thermal effects; Viscoelasticity; Compliance; Dynamical modulus; Internal friction peak; Modified anelastic element; Relaxation strength; Friction
Año:1994
Volumen:211-212
Número:C
Página de inicio:529
Página de fin:533
DOI: http://dx.doi.org/10.1016/0925-8388(94)90559-2
Título revista:Journal of Alloys and Compounds
Título revista abreviado:J Alloys Compd
ISSN:09258388
CODEN:JALCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09258388_v211-212_nC_p529_Hermida

Referencias:

  • Povolo, Matteo, Internal Friction of a Linear Viscoelastic Solid with a Distribution of Relaxation Times (1992) Materials Transactions, JIM, 33, p. 824
  • Nowick, Berry, Lognormal Distribution Function for Describing Anelastic and Other Relaxation Processes I. Theory and Numerical Computations (1961) IBM Journal of Research and Development, 5, p. 297
  • Nowick, Berry, Lognormal Distribution Function for Describing Anelastic and Other Relaxation Processes II. Data Analysis and Applications (1961) IBM Journal of Research and Development, 5, p. 312
  • Tschoegl, (1989) The Phenomenological Theory of Linear Viscoelastic Behaviour, , 2nd edn., Springer, Berlin, Chap. 4
  • Nowick, Berry, (1972) Anelastic Relaxation in Crystalline Solids, , 2nd edn., Pergamon, New York
  • Hermida, Description of the Mechanical Properties of Viscoelastic Materials Using a Modified Anelastic Element (1993) physica status solidi (b), 178, p. 311
  • Povolo, Molinas, Lambri, (1992) Nuovo Cimento D, 14, p. 279
  • Gaudaud, Woirgard, (1989) Mater. Sci. Eng. A, 110, p. L1
  • Cavaille, Jourdan, Perez, Monnerie, Johari, (1987) J. Polym. Sci., Polym. Phys. Ed, 25, p. 1235
  • Povolo, (1989) J. Mater. Sci, 24, p. 1513
  • F. Povolo and É.B. Hemida, Phys. Status Solidi, in press; Ferry, (1980) Viscoelastic Properties of Polymers, p. 264. , 2nd edn., Wiley, New York
  • F. Povolo and O.A. Lambri, submitted to Polymer

Citas:

---------- APA ----------
Hermida, É.B. & Povolo, F. (1994) . Relaxation strength and distribution function of an internal friction peak. Journal of Alloys and Compounds, 211-212(C), 529-533.
http://dx.doi.org/10.1016/0925-8388(94)90559-2
---------- CHICAGO ----------
Hermida, É.B., Povolo, F. "Relaxation strength and distribution function of an internal friction peak" . Journal of Alloys and Compounds 211-212, no. C (1994) : 529-533.
http://dx.doi.org/10.1016/0925-8388(94)90559-2
---------- MLA ----------
Hermida, É.B., Povolo, F. "Relaxation strength and distribution function of an internal friction peak" . Journal of Alloys and Compounds, vol. 211-212, no. C, 1994, pp. 529-533.
http://dx.doi.org/10.1016/0925-8388(94)90559-2
---------- VANCOUVER ----------
Hermida, É.B., Povolo, F. Relaxation strength and distribution function of an internal friction peak. J Alloys Compd. 1994;211-212(C):529-533.
http://dx.doi.org/10.1016/0925-8388(94)90559-2