Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Iron ions are monitored in processes such as bio-leaching, bio-oxidation, ferric leaching, passivation control, and others. The role of iron in different hydrometallurgy processes is very important because it affects strongly several industrial ore production, as chalcopyrite cooper extraction. In this work we present an amperometric FIA system that allows rapid quantification and speciation of iron in bio-mining processes. Linearity range, passivation of the working electrode and interferences were studied. We found a useful lineal range from 10 to 1500 mg L-1 for each of the ions, with a detection limit (Fe2+ and Fe3+) determined at 15 ± 2 mg L-1. High copper concentrations could interfere with the amperometric readings, though not in the copper/iron relationship encountered in this industry. Real samples, including an acid mine drainage sample, and the monitoring of the bio-oxidation kinetics of iron by Acidithiobacillus ferrooxidans were also quantified. In all cases, our results were compared with a standard colorimetric method that allows iron speciation (1,10-phenanthroline), showing good agreement between both methods. The electrochemical method presented here allows high sample throughput (ca. 45 samples h-1), fast analysis (ca. 1 min), and reagent free quantification of total iron, ferric and ferrous ions. © 2015 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Reagent-free flow-injection amperometric sensor for quantification and speciation of iron for bio-hydrometallurgical applications
Autor:Saavedra, A.; Donati, E.; Cortón, E.
Filiación:Departamento de Química Biológica, FCEyN - UBA and IQUIBICEN-CONICET, Ciudad Universitaria, Intendente Güiraldes 2160, Pabellón II, Piso 4, Ciudad Autonoma de Buenos Aires, 1428, Argentina
Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI - CONICET, UNLP), Facultad de Ciencias Exactas, UNLP, 50 y 115, La Plata, 1900, Argentina
Palabras clave:Acidithiobacillus ferrooxidans; Bio-hydrometallurgic; Electrochemistry; Ferric ion; Ferrous ion; Amperometric sensors; Copper; Electrochemistry; Hydrometallurgy; Ions; Leaching; Metal ions; Ore treatment; Passivation; 1 ,10-phenanthroline; Acidithiobacillus ferrooxidans; Bio-hydrometallurgic; Colorimetric methods; Copper concentration; ELectrochemical methods; Ferric ions; Ferrous ion; Iron
Año:2015
Volumen:220
Página de inicio:448
Página de fin:455
DOI: http://dx.doi.org/10.1016/j.snb.2015.05.101
Título revista:Sensors and Actuators, B: Chemical
Título revista abreviado:Sens Actuators, B Chem
ISSN:09254005
CODEN:SABCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v220_n_p448_Saavedra

Referencias:

  • Taylor, S.R., McLennan, S.M., (1985) The Continental Crust. Its Composition and Evolution, , Blackwell Scientific Oxford
  • Lieu, P.T., Heiskala, M., Peterson, P.A., Yang, Y., The roles of iron in health and disease (2001) Mol. Aspects Med., 22, pp. 1-87
  • Morgan, B., Lahav, O., The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O<inf>2</inf> in aqueous solution-basic principles and a simple heuristic description (2007) Chemosphere, 68, pp. 2080-2084
  • Nefso, E.K., Burns, S.E., McGrath, C.J., Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron (2005) J. Hazard. Mater. B, 123, pp. 79-88
  • Huang, S., Zhou, L., Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage (2012) Mater. Sci. Eng. C, 32, pp. 916-921
  • Vera, M., Schippers, A., Sand, W., Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-part A (2013) Appl. Microbiol. Biotechnol., 97, pp. 7529-7541
  • Sand, W., Gehrke, T., Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria (2006) Res. Microbiol., 157, pp. 49-56
  • Suzuki, L., Lizama, H., Tackaberry, P., Competitive inhibition of ferrous iron oxidation by Thiobacillus ferrooxidans by increasing concentration of cells (1989) Appl. Environ. Microbiol., 5, pp. 1117-1121
  • Kawabe, Y., Inoue, C., Suto, K., Chida, T., Inhibitory effect of high concentrations of ferric ions on the activity of Acidithiobacillus ferrooxidans (2003) J. Biosci. Bioeng., 96, pp. 375-379
  • May, N., Ralph, D.E., Hansford, G.S., Dynamic redox potential measurement for determining the ferric leach kinetics of pyrite (1997) Miner. Eng., 10, pp. 1279-1290
  • Karamanev, D.G., Nikolov, L.N., Mamatarkova, V., Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions (2002) Miner. Eng., 15, pp. 341-346
  • Paipa, C., Mateo, M., Godoy, I., Poblete, E., Toral, M.I., Vargas, T., Comparative study of alternative methods for the simultaneous determination of Fe+3 and Fe+2 in leaching solutions and in acid mine drainages (2005) Miner. Eng., 18, pp. 1116-1120
  • Lu, M., Rees, N.V., Kabakaev, A.S., Compton, R.G., Determination of iron: Electrochemical methods (2012) Electroanalysis, 24, pp. 1693-1702
  • Town, R.M., Emons, H., Buffle, J., Chapter 5, 9, Speciation analysis by electrochemical methods (2003) Handbook of Elemental Speciation: Techniques and Methodology, , R. Cornelis, H. Crews, J. Caruso, K. Heumann, John Wiley & Sons, Ltd. New York
  • Young, C.C., Laitinen, H.A., Anodic deposition and cathodic stripping of iron in acetate medium (1972) Anal. Chem., 44, pp. 457-463
  • Vepsäläinen, M., Chen, M., Yang, Y., Brokenshire, R., Muster, T., Cu2+, Fe2+ and Fe3+ analysis of bioleaching solutions using chronoamperometry and BDD electrode (2014) J. Appl. Electrochem., 44, pp. 1135-1143
  • Trojanowicz, M., Recent developments in electrochemical flow detections - A review: Part I. Flow analysis and capillary electrophoresis (2009) Anal. Chim. Acta, 653, pp. 36-58
  • Muir, M.K., Andersen, T.N., Determination of ferrous iron in copper process metallurgical solutions by o-phenanthroline colorimetric methods (1977) Metall. Trans. B, 8, pp. 517-518
  • Angell, D.H., Dickinson, T., The kinetics of the ferrous/ferric and ferro/ferricyanide reactions at platinum and gold electrodes: Part I. Kinetics at bare-metal surfaces (1972) J. Electroanal. Chem., 35, pp. 55-72
  • Córdoba, E.M., Muñoz, J.A., Blázquez, M.L., González, F., Ballester, A., Leaching of chalcopyrite with ferric ion. Part I: General aspects (2008) Hydrometallurgy, 93, pp. 81-87
  • Silverman, M.P., Lundgren, D.G., Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: An improved medium and a harvesting procedure for securing high cell yields (1959) J. Bacteriol., 77, pp. 642-647
  • Druschel, G.K., Baker, B.J., Gihring, T.M., Banfield, J.F., Acid mine drainage biogeochemistry at Iron Mountain, California (2004) Geochem. Trans., 5, pp. 13-32
  • Watling, H.R., The bioleaching of sulphide minerals with emphasis on copper sulphides - A review (2006) Hydrometallurgy, 84, pp. 81-108
  • Cranny, A., Harris, N.R., Nie, M., Wharton, J.A., Wood, R.J.K., Stokes, K.R., Sensors for corrosion detection: Measurement of copper ions in 3.5% sodium chloride using screen-printed platinum electrodes (2012) IEEE Sens. J., 12, pp. 2091-2099
  • Molina, A., Morales, I., Comparison between derivative and differential pulse voltammetric curves of EC, CE and catalytic processes at spherical electrodes and microelectrodes (2007) Int. J. Electrochem. Sci., 2, pp. 386-405
  • Cadle, S.H., Bruckenstein, S., Rotating ring-disk study of the underpotential deposition of copper at platinum in 0.5 M hydrochloric acid (1971) Anal. Chem., 43, pp. 932-933
  • Markovic, N.M., Gasteiger, H.A., Ross, P.N., Copper electrodeposition on Pt(1 1 1) in the presence of chloride and (Bi)sulfate: Rotating ring-Pt(1 1 1) disk electrode studies (1995) Langmuir, 11, pp. 4098-4108
  • Ponce De Leon, C., Walsh, F.C., Research and development techniques 1: Potentiodynamic studies of copper metal deposition (2003) Trans. Inst. Met. Finish., 81, pp. B95-B100
  • Wang, M., Zhang, Y., Muhammed, M., Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions III. the system Cu(I,II)-Cl--e at 298.15 K (1997) Hydrometallurgy, 45, pp. 53-72
  • Olsson, L., Schulze, U., Nielsen, J., On-line bioprocess monitoring-an academic discipline or an industrial tool? (1998) Trend. Anal. Chem., 17, pp. 88-95

Citas:

---------- APA ----------
Saavedra, A., Donati, E. & Cortón, E. (2015) . Reagent-free flow-injection amperometric sensor for quantification and speciation of iron for bio-hydrometallurgical applications. Sensors and Actuators, B: Chemical, 220, 448-455.
http://dx.doi.org/10.1016/j.snb.2015.05.101
---------- CHICAGO ----------
Saavedra, A., Donati, E., Cortón, E. "Reagent-free flow-injection amperometric sensor for quantification and speciation of iron for bio-hydrometallurgical applications" . Sensors and Actuators, B: Chemical 220 (2015) : 448-455.
http://dx.doi.org/10.1016/j.snb.2015.05.101
---------- MLA ----------
Saavedra, A., Donati, E., Cortón, E. "Reagent-free flow-injection amperometric sensor for quantification and speciation of iron for bio-hydrometallurgical applications" . Sensors and Actuators, B: Chemical, vol. 220, 2015, pp. 448-455.
http://dx.doi.org/10.1016/j.snb.2015.05.101
---------- VANCOUVER ----------
Saavedra, A., Donati, E., Cortón, E. Reagent-free flow-injection amperometric sensor for quantification and speciation of iron for bio-hydrometallurgical applications. Sens Actuators, B Chem. 2015;220:448-455.
http://dx.doi.org/10.1016/j.snb.2015.05.101