Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Simple, low-cost and acid-resistant carbon-based screen-printed electrodes (SPEs) addressed to detection of hexavalent chromium species, Cr(VI), in sulfuric acid at pH about 1, were prepared and characterized. Working and counter electrodes were prepared jointly on the same substrate in a single strip (working-counter electrodes pair). The batch printing process allowed obtaining many working-counter electrode pairs in a unique step. The developed working electrodes are comprised of several layers deposited on an alumina substrate: (1) bottom silver conductor, (2) dense organic-graphite composite conductor, (3) active layer consisting of a porous organic-graphite composite which contains a Cr(III) ionophore for testing Cr(III) obtained after reducing Cr(VI), and (4) an insulating and protective dielectric. All materials except the bottom Ag conductor were made on an organic matrix based on a thermoplastic polymer, polyvinylbutyral (PVB). The amperometric determination of Cr(VI) species at pH 1 was performed over a wide concentration range (dynamic range 3 μM-40 mM). The range for linear amperometric response is 3 μM-10 mM, with sensitivity about 0.08 mA mM-1. The sensitivity is improved in comparison with previously developed sensors, while keeping a low limit of detection (LOD about 1 μM). The response of the sensors are not interfered by the presence of Cr(III) in the solution, although the sensor can detect local formation of Cr(III) at the electrode surface after the reduction of Cr(VI) when diethylenetriamine-pentaacetic acid (DTPA), a complexing agent for Cr(III) is incorporated into the pastes. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media
Autor:Miscoria, S.A.; Jacq, C.; Maeder, T.; Martín Negri, R.
Filiación:Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Química, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Chubut, Argentina
Laboratoire de Production Microtechnique (LPM), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
Palabras clave:Electrochemical sensors; Hexavalent chromium; Screen-printed electrodes; Thick-film technology; Amperometric determination; Amperometric response; Composite conductors; Hexavalent chromium; POLY VINYL BUTYRAL PVB; Screen printed electrodes; Thermoplastic polymer; Thick-film technology; Alumina; Chromium; Electrochemical sensors; Electrodes; Sensors; Silver; Chromium compounds
Año:2014
Volumen:195
Página de inicio:294
Página de fin:302
DOI: http://dx.doi.org/10.1016/j.snb.2014.01.013
Título revista:Sensors and Actuators, B: Chemical
Título revista abreviado:Sens Actuators, B Chem
ISSN:09254005
CODEN:SABCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v195_n_p294_Miscoria

Referencias:

  • Wu, Q., Qu, Y., Li, X., Wang, D., Chromium exhibits adverse effects at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans (2012) Chemosphere, 87, pp. 1281-1287
  • Shanker, A.K., Venkateswarlu, B., Chromium: Environmental pollution, health effects and mode of action (2011) Encyclopedia of Environmental Health, pp. 650-659
  • Li, Z.-H., Li, P., Randak, T., Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, Oncorhynchus mykiss: A comparative study of in vivo and in vitro (2011) Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol., 153, pp. 402-407
  • Kiliç, E., Puig, R., Baquero, G., Font, J., Çolak, S., Gürler, D., Environmental optimization of chromium recovery from tannery sludge using a life cycle assessment approach (2011) J. Hazard. Mater., 192, pp. 393-401
  • Vincent, J.B., The bioinorganic chemistry of chromium (III) (2001) Polyhedron, 20, pp. 1-26
  • Kotas, J., Stasicka, Z., Chromium occurrence in the environment and methods of its speciation (2000) Environmental Pollution, 107 (3), pp. 263-283. , DOI 10.1016/S0269-7491(99)00168-2, PII S0269749199001682
  • Gagneten, M., Paggi, J.C., Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the Lower Basin of the Salado River (Argentina) (2009) Water Air Soil Pollut., pp. 317-334
  • (1993) Guidance for Drinking Water Quality, Recommendations, 1, pp. 45-46. , second ed., WHO, Geneva
  • Hanrahan, G., Patil, D.G., Wang, J., Electrochemical sensors for environmental monitoring: Design, development and applications (2004) Journal of Environmental Monitoring, 6 (8), pp. 657-664. , DOI 10.1039/b403975k
  • Alguacil, F.J., Alonso, M., Lopez, F., Lopez-Delgado, A., Uphill permeation of Cr(VI) using Hostarex A327 as ionophore by membrane-solvent extraction processing (2008) Chemosphere, 72, pp. 684-689
  • Alguacil, F.J., Coedo, A.G., Dorado, M.T., Sastre, A.M., Uphill permeation of chromium (VI) using Cyanex 921 as ionophore across an immobilized liquid membrane (2001) Hydrometallurgy, 61 (1), pp. 13-19. , DOI 10.1016/S0304-386X(01)00147-5, PII S0304386X01001475
  • Tuzen, M., Soylak, M., Multiwalled carbon nanotubes for speciation of chromium in environmental samples (2007) Journal of Hazardous Materials, 147 (1-2), pp. 219-225. , DOI 10.1016/j.jhazmat.2006.12.069, PII S0304389407000131
  • Welch, C.M., Nekrassova, O., Compton, R.G., Reduction of hexavalent chromium at solid electrodes in acidic media: Reaction mechanism and analytical applications (2005) Talanta, 65, pp. 74-80
  • Rosi, P.E., Miscoria, S.A., Bernik, D.L., Negri, R.M., Customized design of electronic noses placed on top of air-lift bioreactors for in situ monitoring the off-gas patterns (2012) Bioprocess Biosyst. Eng., 35, pp. 835-842
  • Bredberg, K., Karlsson, H.T., Holst, O., Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans (2004) Bioresource Technology, 92 (1), pp. 93-96. , DOI 10.1016/j.biortech.2003.08.004
  • Gargarello, R.M., Di Gregorio, D., Huck, H., Fernandez Niello, J., Curutchet, G., Reduction of uranium(VI) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans (2010) Hydrometallurgy, 104, pp. 529-532
  • Pflaum, R.T., Howick, L.C., The chromium-diphenylcarbazide reaction (1956) J. Am. Chem. Soc., 78 (19), pp. 4862-4866
  • Urone, P.F., Stability of colorimetric reagent for chromium, s-diphenylcarbazide, in various solvents (1955) Anal. Chem., 27 (8), pp. 1354-1355
  • Inoue, Y., Sakai, T., Kumaguai, H., Simultaneous determination of Cr(III) and Cr(VI) by ion chromatography with inductively coupled plasma mass spectrometry (1995) J. Chromatogr. A, 706, pp. 127-136
  • Liang, P., Shi, T.Q., Lu, H.B., Jiang, Z.C., Hu, B., Adsorption of Cr(VI) and speciation of Cr(VI) and Cr(III) in aqueous solutions using chemically modified chitosan (2003) Spectrochim. Acta B, 58, pp. 1709-1714
  • Wu, P., Chen, H., Cheng, G., Hou, X., Exploring surface chemistry of nano-TiO(2) for automated speciation analysis of Cr(III) and Cr(VI) in drinking water using flow injection and ET-AAS detection (2009) J. Anal. At. Spectrom., 24, pp. 1098-1104
  • Siles Cordero, M.T., Vereda Alonso, E., Garcia De Torres, A., Cano Pavon, J.M., Development of a new system for the speciation of chromium in natural waters and human urine samples by combining ion exchange and ETA-AAS (2004) J. Anal. At. Spectrom., 19, pp. 398-403
  • Chang, Y.L., Jiang, S.J., Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass spectrometry (2001) J. Anal. Atom. Spectrom., 16, p. 858
  • Gomez, V., Callao, M.P., Chromium determination and speciation since 2000 (2006) TrAC - Trends in Analytical Chemistry, 25 (10), pp. 1006-1015. , DOI 10.1016/j.trac.2006.06.010, PII S0165993606001701
  • Tehrani, M.S., Azar, P.A., Husain, S.W., Shafaei, F., Dispersive liquid-liquid microextraction of Cr(VI) in water and hair samples by electrothermal atomic absorption spectrometry (2010) Asian J. Chem., 22, pp. 6302-6310
  • Diniz Pereira, C., Techy, J.G., Moreira Ganzarollib, E., Quináia, S.P., Chromium fractionation and speciation in natural waters (2012) J. Environ. Monit., 14, pp. 1559-1564
  • Jorge, E.O., Rocha, M.M., Fonseca, I.T.E., Neto, M.M.M., Studies on the stripping voltammetric determination and speciation of chromium at a rotating-disc bismuth film electrode (2010) Talanta, 81, pp. 556-564
  • Lin, L., Lawrence, N.S., Thongngamdeea, S., Wang, J., Lin, Y., Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode (2005) Talanta, 65, pp. 144-148
  • Grabarczyk, M., Speciation analysis of chromium by adsorptive stripping voltammetry in tap and river water samples (2008) Electroanalysis, 20, pp. 2217-2222
  • Bergamini, M.F., Dos Santos, D.P., Zanoni, M.V.B., Development of a voltammetric sensor for chromium(VI) determination in wastewater sample (2007) Sens. Actuators B, 123, pp. 902-907
  • Sánchez-Moreno, R.A., Gismera, M.J., Sevilla, M.T., Procopio, J.R., Evaluation of solid-state platforms for chromium (VI) potentiometric sensor development (2010) Anal. Bioanal. Chem., 397, pp. 331-338
  • Fiol, N., De La Torre, F., Demeyere, P., Florido, A., Villaescusa, I., Vegetable waste-based sensors for metal ion determination (2007) Sens. Actuators B, 122, pp. 187-194
  • Svancara, I., Foret, P., Vytras, K., A study on the determination of chromium as chromate at a carbon paste electrode modified with surfactants (2004) Talanta, 64, pp. 844-852
  • Hallam, P.M., Kampouris, D.K., Kadara, R.O., Jenkinson, N., Banks, C.E., Graphite screen printed electrodes for the electrochemical sensing of chromium(VI) (2010) Analyst, 135, pp. 1947-1951
  • Domínguez-Renedo, O., Ruiz-Espelt, L., García-Astorgano, N., Arcos-Martínez, M.J., Electrochemical determination of chromium(VI) using metallic nanoparticle-modified carbon screen-printed electrodes (2008) Talanta, 76, pp. 854-858
  • Serra, N., Maeder, T., Ryser, P., Piezoresistive effect in epoxy-graphite composites (2012) Sens. Actuators A, 186, pp. 198-202
  • Jiang, B., Muralt, P., Heeb, P., Santis-Alvarez, A.J., Nabavi, M., Poulikakos, D., Niedermann, P., Maeder, T., A micro heater platform with fluid channels for testing micro-solid oxide fuel cell components (2012) Sens. Actuators B, 175, pp. 218-224
  • Gruet, F., Vecchio, F., Affolderbach, C., Pétremand, Y., De Rooij, N.F., Maeder, T., Mileti, G., A miniature frequency-stabilized VCSEL system emitting at 795 nm based on LTCC modules (2013) Opt. Lasers Eng., 51, pp. 1023-1027
  • Maeder, T., Miscoria, S., Jacq, C., Ryser, P., Negri, R.M., Screen-printed electrochemical chromium (VI) sensing electrodes for effluent bioremediation monitoring (2012) Proc. Eng., 47, pp. 1303-1306
  • Rivas, G.A., Miscoria, S.A., Desbrieres, J., Barrera, G.D., New biosensing platforms based on the layer-by-layer self-assembling of polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes (2007) Talanta, 71 (1), pp. 270-275. , DOI 10.1016/j.talanta.2006.03.056, PII S0039914006002554
  • Miscoria, S.A., Desbrieres, J., Barrera, G.D., Labbe, P., Rivas, G.A., Glucose biosensor based on the layer-by-layer self-assembling of glucose oxidase and chitosan derivatives on a thiolated gold surface (2006) Analytica Chimica Acta, 578 (2), pp. 137-144. , DOI 10.1016/j.aca.2006.06.060, PII S0003267006014048
  • Pitt, K., (2005) Handbook of Thick Film Technology, , 2nd ed., Electrochemical Publications, Isle of Man
  • Moissev, Y.V., Khalturinskii, N.A., Zaikov, G.E., The mechanism of the acid-catalysed hydrolysis of polysaccharides (1976) Carbohydr. Res., 51, pp. 39-54
  • Bucci, R., Magr, A.D., Magr, A.L., Napoli, A., On the reaction of iron(III) with chromium(III)-DTPA chelating agent (2000) Polyhedron, 19 (24-25), pp. 2421-2425. , PII S0277538700005404
  • Li, Y., Xue, H., Determination of Cr(III) and Cr(VI) species in natural waters by catalytic cathodic stripping voltammetry (2001) Analytica Chimica Acta, 448 (1-2), pp. 121-134. , DOI 10.1016/S0003-2670(01)01314-9, PII S0003267001013149
  • Rubianes, M.D., Rivas, G.A., Carbon nanotubes paste electrode (2003) Electrochem. Commun., 5, pp. 689-694

Citas:

---------- APA ----------
Miscoria, S.A., Jacq, C., Maeder, T. & Martín Negri, R. (2014) . Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media. Sensors and Actuators, B: Chemical, 195, 294-302.
http://dx.doi.org/10.1016/j.snb.2014.01.013
---------- CHICAGO ----------
Miscoria, S.A., Jacq, C., Maeder, T., Martín Negri, R. "Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media" . Sensors and Actuators, B: Chemical 195 (2014) : 294-302.
http://dx.doi.org/10.1016/j.snb.2014.01.013
---------- MLA ----------
Miscoria, S.A., Jacq, C., Maeder, T., Martín Negri, R. "Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media" . Sensors and Actuators, B: Chemical, vol. 195, 2014, pp. 294-302.
http://dx.doi.org/10.1016/j.snb.2014.01.013
---------- VANCOUVER ----------
Miscoria, S.A., Jacq, C., Maeder, T., Martín Negri, R. Screen-printed electrodes for electroanalytical sensing, of chromium VI in strong acid media. Sens Actuators, B Chem. 2014;195:294-302.
http://dx.doi.org/10.1016/j.snb.2014.01.013