Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

As aerobic respiration proceeds it consumes oxygen and produces carbon dioxide; and the relation between these two parameters, the respiratory quotient (RQ), is related to the type of substances being respired. Therefore, for a given water or wastewater origin, a more or less stable RQ is expected, making possible the estimation of BOD5 by means of CO2 production measurement. The microbial breathing intensity was continuously measured using a potentiometric CO2 electrode as transducer. We named this new biosensor BODstCO2. Proof of concept in this study was carried out with Saccharomyces cerevisiae or a BODSEED mixed microbial community as a biological recognition component. The effect of microbial load (0.5, 5, and 25 mg cm-2 membrane, dry weight) over the apparent linear range (up to 670 mg L-1 BOD5, 5 mg cm-2 membrane), detection limit (ca. 1 mg L-1 BOD5), stabilization time, reproducibility (typically better than 10%) and bio-membrane type (membrane or PVA hydrogel entrapment) were studied. When the Nernstian biosensor response was used for calibration, up to 20,000 mg L-1 glucose standard was measured without sample dilution. BOD calibrations were accomplished using the two more commonly used standard artificial wastewaters, GGA and OECD solutions. The results showed that the potentiometric CO2 electrode was an useful transducer, allowing us to build, calibrate and characterize a BOD-like biosensor. Moreover, limitations present at oxygen amperometric electrode (customarily used as BOD biosensor-based transducer) such as oxygen low solubility and its reduction at the cathode were avoided. © 2010 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production
Autor:Chiappini, S.A.; Kormes, D.J.; Bonetto, M.C.; Sacco, N.; Cortón, E.
Filiación:Biosensors and Bioanalysis Group, Biochemistry Department, School of Sciences, Ciudad Universitaria, 1428 Ciudad Autonoma de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
Palabras clave:BOD; BODstCO2; BODSEED; Carbon dioxide; Potentiometry; PVA; Saccharomyces cerevisiae; Aerobic respiration; Amperometric electrodes; Artificial wastewater; Biological recognition; Biosensor response; BODSEED; Detection limits; Dry weight; Linear range; Membrane types; Microbial biosensor; Microbial communities; Microbial loads; Organic waters; Potentiometric CO; Potentiometry; Production measurement; Proof of concept; PVA hydrogel; Reproducibilities; Respiratory quotients; Saccharomyces cerevisiae; Sample dilution; Stabilization time; Two parameter; Biosensors; Calibration; Carbon dioxide; Glucose; Oxygen; Polyvinyl alcohols; Potentiometers (electric measuring instruments); Transducers; Wastewater; Water pollution; Yeast; Biochemical oxygen demand
Año:2010
Volumen:148
Número:1
Página de inicio:103
Página de fin:109
DOI: http://dx.doi.org/10.1016/j.snb.2010.04.039
Título revista:Sensors and Actuators, B: Chemical
Título revista abreviado:Sens Actuators, B Chem
ISSN:09254005
CODEN:SABCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v148_n1_p103_Chiappini

Referencias:

  • (1998) Standard Methods for the Examination of Water and Wastewater. 20th ed., , American Public Health Association
  • Karube, I., Matsunaga, T., Mitsuda, S., Suzuki, S., Microbial electrode BOD sensors (1977) Biotechnol. Bioeng., 19, pp. 1535-1547
  • Karube, I., Matsunaga, T., Susuki, H., A new microbial electrode for BOD estimation (1977) J. Solid Phase Biochem., 2, pp. 97-107
  • Karube, I., Mitsuda, S., Matsunaga, T., Suzuki, S., A rapid method for estimation of BOD by using immobilized microbial cells (1977) J. Ferment. Technol., 55, pp. 243-248
  • Chee, G.-J., Nomura, Y., Ikebukuro, K., Karube, I., Optical fiber biosensor for the determination of low biochemical oxygen demand (2000) Biosens. Bioelectron., 15, pp. 371-376
  • Kwok, N.-Y., Dong, S., Lo, W., Wong, K.-Y., An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD) (2005) Sens. Actuators B, 110, pp. 289-298
  • Sakaguchi, T., Kitagawa, K., Ando, T., Murakami, Y., Morita, Y., Yamamura, A., Yokoyama, K., Tamiya, E., A rapid BOD sensing system using luminescent recombinants of Escherichia coli (2003) Biosens. Bioelectron., 19, pp. 115-121
  • Yoshida, N., Yano, K., Morita, T., McNiven, S.J., Nakamura, H., Karube, I., A mediator-type biosensor as a new approach to biochemical oxygen demand estimation (2000) Analyst, 125, pp. 2280-2284
  • Catterall, K., Morris, K., Gladman, C., Zhao, H., Pasco, N., John, R., The use of microorganisms with broad range substrate utilization for the ferricyanide-mediated rapid determination of biochemical oxygen demand (2001) Talanta, 55, pp. 1187-1194
  • Trosok, S.P., Driscoll, B.T., Luong, J.H.T., Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement (2001) Appl. Microbiol. Biotechnol., 56, pp. 550-554
  • Murakami, Y., Kikuchi, T., Yamamura, A., Sakaguchi, T., Yokoyama, K., Ito, Y., Takiue, M., Tamiya, E., An organic pollution sensor based on surface photovoltage (1998) Sens. Actuators B, 53, pp. 163-172
  • Vaiopoulou, E., Melidis, P., Kampragou, E., Aivasidis, A., On-line load monitoring of wastewaters with a respirographic microbial sensor (2005) Biosens. Bioelectron., 21, pp. 365-371
  • Melidis, P., Vaiopoulou, E., Aivasidis, A., Development and implementation of microbial sensors for efficient process control in wastewater treatment plants (2008) Bioprocess Biosyst. Eng., 31, pp. 277-282
  • Riedel, K., Renneberg, R., Wollenberger, U., Kaiser, G., Scheller, F.W., Microbial sensors: fundamentals and application for process control (1989) J. Chem. Technol. Biotechnol., 44, pp. 85-106
  • Liu, J., Mattiasson, B., Microbial BOD sensors for wastewater analysis (2002) Water Res., 36, pp. 3786-3802
  • Tan, T.C., Wu, C., BOD sensors using multi-species living or thermally killed cells of BODSEED microbial culture (1999) Sens. Actuators B, 54, pp. 252-260
  • Severinghaus, J.W., Bradley, A.F., Electrodes for blood PO2 and PCO2 determination (1958) J. Appl. Physiol., 13, pp. 515-520
  • Cortón, E., Kocmur, S., Haim, L., Galagovsky, L.A., Potentiometric determination of CO2 concentration in the gaseous phase: applications in different laboratories activities (2000) J. Chem. Educ., 77, pp. 1188-1191
  • Kocmur, S., Cortón, E., Haim, L., Locascio, G.A., Galagovsky, L.A., CO2 - potentiometric determination and electrode construction. A hands-on approach (1999) J. Chem. Educ., 76, pp. 1253-1255
  • Organization for Economic Cooperation and Development (OECD), OECD Guidel. (1991) Testing Chem., 209, p. 1
  • Nakamura, H., Mogi, Y., Hattori, H., Kita, Y., Hattori, D., Yoshimura, A., Karube, I., Absorption-based highly sensitive and reproducible biochemical oxygen demand measurement method for seawater using salt-tolerant yeast Saccharomyces cerevisiae (2008) Anal. Chim. Acta, 620, pp. 127-133
  • Velling, S., Tenno, T., Different calibration methods of a microbial BOD sensor for analysis of municipal wastewaters (2009) Sens. Actuators B, 141, pp. 233-238
  • Di Lorenzo, M., Curtis, T.P., Head, I.M., Scott, K., A single-chamber microbial fuel cell as a biosensor for wastewaters (2009) Water Res., 43, pp. 3145-3154
  • Dhall, P., Kumar, A., Joshi, A., Saxsena, T.K., Manoharan, A., Makhijani, S.D., Kumar, R., Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor (2008) Sens. Actuators B, 133, pp. 478-483
  • Hanstein, S., de Beer, D., Felle, H.H., Miniaturised carbon dioxide sensor designed for measurements within plant leaves (2001) Sens. Actuators B, 81, pp. 107-114
  • del Giorgio, P.A., le, P.J., Williams, B., (2005) Respiration in Aquatic Ecosystems, , Oxford University Press
  • Williams, P.J.L., Robertson, J.E., Overall planktonic oxygen and carbon dioxide metabolisms: the problem of reconciling observations and calculations of photosynthetic quotients (1991) J. Plankton Res., 13, pp. S153-S169
  • Seo, K.S., Choo, K.H., Chang, H.N., Park, J.K., A flow injection analysis system with encapsulated high-density Saccharomyces cerevisiae cells for rapid determination of biochemical oxygen demand (2009) Appl. Microbiol. Biotechnol., 83, pp. 217-223
  • Kara, S., Keskinler, B., Erhan, E., A novel microbial BOD biosensor developed by the immobilization of P. Syringae in micro-cellular polymers (2009) J. Chem. Technol. Biotechnol., 84, pp. 511-518
  • Liu, L., Shang, L., Guo, S., Li, D., Liu, C., Qi, L., Dong, S., Organic-inorganic hybrid material for the cells immobilization: long-term viability mechanism and application in BOD sensors (2009) Biosens. Bioelectron., 25, pp. 523-526

Citas:

---------- APA ----------
Chiappini, S.A., Kormes, D.J., Bonetto, M.C., Sacco, N. & Cortón, E. (2010) . A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production. Sensors and Actuators, B: Chemical, 148(1), 103-109.
http://dx.doi.org/10.1016/j.snb.2010.04.039
---------- CHICAGO ----------
Chiappini, S.A., Kormes, D.J., Bonetto, M.C., Sacco, N., Cortón, E. "A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production" . Sensors and Actuators, B: Chemical 148, no. 1 (2010) : 103-109.
http://dx.doi.org/10.1016/j.snb.2010.04.039
---------- MLA ----------
Chiappini, S.A., Kormes, D.J., Bonetto, M.C., Sacco, N., Cortón, E. "A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production" . Sensors and Actuators, B: Chemical, vol. 148, no. 1, 2010, pp. 103-109.
http://dx.doi.org/10.1016/j.snb.2010.04.039
---------- VANCOUVER ----------
Chiappini, S.A., Kormes, D.J., Bonetto, M.C., Sacco, N., Cortón, E. A new microbial biosensor for organic water pollution based on measurement of carbon dioxide production. Sens Actuators, B Chem. 2010;148(1):103-109.
http://dx.doi.org/10.1016/j.snb.2010.04.039