Artículo

Yánez Heras, J.; Rodriguez, S.D.; Negri, R.M.; Battaglini, F. "Chelating electrodes as taste sensor for the trace assessment of metal ions" (2010) Sensors and Actuators, B: Chemical. 145(2):726-733
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Impedance spectroscopy combined with principal component analysis allows the trace detection of metal ions. The detection system is based on two modified electrodes, each of them containing a chelating agent (pyrocatechol violet and a nitrilotriacetic derivative); as the chelator is able to capture the metal ion at very low concentrations, important electrical changes are produced on the surface environment, generating patterns with different features for each ion. The system is able to differentiate eight metal ions (Al3+, Fe3+, Cd2+, Pb2+, Hg2+, Cu2+, Ca2+ and Ag+) at micromolar levels in ultrapure water. The method allows the detection of metal ions in aqueous samples without the need of sample conditioning, rinsing steps or the addition of probes. Selecting the appropriate frequencies and sensors, the array can also be applied to different aqueous systems such as bottled mineral water or concentrated NaCl (27%) yielding similar results. © 2010 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Chelating electrodes as taste sensor for the trace assessment of metal ions
Autor:Yánez Heras, J.; Rodriguez, S.D.; Negri, R.M.; Battaglini, F.
Filiación:INQUIMAE - Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina
Palabras clave:Chelating electrode; Electronic tongue; Impedance; Principal component analysis; Trace metal detection; Aqueous samples; Aqueous system; Chelating agent; Detection system; Electronic tongue; Impedance spectroscopy; Low concentrations; Micromolar level; Mineral water; Modified electrodes; Pyrocatechol violet; Surface environments; Taste sensor; Trace detection; Trace metal; Ultra-pure water; Beverages; Calcium; Chelation; Electrodes; Electronic tongues; Lead; Mercury (metal); Metal analysis; Metal detectors; Metal ions; Metals; Sensors; Sodium chloride; Trace analysis; Trace elements; Water; Principal component analysis
Año:2010
Volumen:145
Número:2
Página de inicio:726
Página de fin:733
DOI: http://dx.doi.org/10.1016/j.snb.2010.01.027
Título revista:Sensors and Actuators, B: Chemical
Título revista abreviado:Sens Actuators, B Chem
ISSN:09254005
CODEN:SABCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v145_n2_p726_YanezHeras

Referencias:

  • Shcherbatykh, I., Carpenter, D.O., The role of metals in the etiology of Alzheimer's disease (2007) J. Alzheimer's Dis., 11, pp. 191-205
  • Flaten, T.P., Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water (2001) Brain Res. Bull., 55, pp. 187-196
  • Secondary Drinking Water Regulations: Guidance for Nuisance Chemicals EPA 810/K-92-001, , http://www.epa.gov/safewater/consumer/2ndstandards.html, July 1992
  • (1992) Handbook of Organic Analytical Reagents. 2nd ed., , Ueno K., Imamura T., and Cheng K.L. (Eds), CRC, Boca Raton, Florida
  • Chaberek, S., Martell, A.E., (1959) Organic Sequestering Agents, , Wiley, New York
  • Kolthoff, I.M., Sandell, E.B., Meehan, E.J., Bukenstein, S., (1969) Quantitative Chemical Analysis. 4th ed., , The Macmillan Company, Toronto, Canada
  • Palacios, M.A., Wang, Z., Montes, V.A., Zyryanov, G.V., Anzenbacher Jr., P., Rational design of a minimal size sensor array for metal ion detection (2008) J. Am. Chem. Soc., 130, pp. 10307-10314
  • Rodriguez, M.C., Kawde, A.-N., Wang, J., Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge (2005) Chem. Commun., pp. 4267-4269
  • Katz, E., Willner, I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors (2003) Electroanalysis, 15, pp. 913-947
  • Yang, L.-M.C., Diaz, J.E., McIntire, T.M., Weiss, G.A., Penner, R.M., Direct electrical transduction of antibody binding to a covalent virus layer using electrochemical impedance (2008) Anal. Chem., 80, pp. 5695-5705
  • Pioggia, G., Di Francesco, F., Marchetti, A., Ferro, M., Leardi, R., Ahluwalia, A., A composite sensor array impedentiometric electronic tongue: Part I. Characterization (2007) Biosens. Bioelectron., 22, pp. 2618-2623
  • Ferreira, M., Riul Jr., A., Wohnrath, K., Fonseca, F.J., Oliveira Jr., O.N., Mattoso, L.H.C., High-performance taste sensor made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex (2003) Anal. Chem., 75, pp. 953-955
  • Priano, G., Gonzalez, G., Günther, M., Battaglini, F., Disposable gold electrode array for simultaneous electrochemical studies (2008) Electroanalysis, 20, pp. 91-97
  • Johnson, R.A., Wichern, D.W., (2002) Applied Multivariate Statistical Analysis, , Prentice Hall, New Jersey
  • Struyf, A., Hubert, M., Rousseeuw, P.J., Integrating robust clustering techniques in S-PLUS (1997) Comput. Stat. Data Anal., 26, pp. 17-37
  • Kaufman, L., Rousseeuw, P.J., Statistical data analysis based on the L1 norm (1987) Clustering by Means of Medoids, pp. 405-416. , Dodge Y. (Ed), North-Holland, Amsterdam
  • Scott, S.M., James, D., Ali, Z., Data analysis for electronic nose systems (2006) Microchim. Acta, 156, pp. 183-207
  • Berrueta, L.A., Alonso-Salces, R.M., Héberger, K., Supervised pattern recognition in food analysis (2007) J. Chromatogr. A, 1158, pp. 196-214
  • Cai, C.-X., Yin, L.-H., Xue, K.-H., Electrocatalysis of NADH oxidation at a glassy carbon electrode modified with pyrocatechol sulfonephthalein (2000) J. Mol. Catal. A: Chem., 152, pp. 179-186
  • Yánez-Heras, J., Forte-Giacobone, A.F., Battaglini, F., Ascorbate amperometric determination using conducting copolymers from aniline and N-(3-propane sulfonic acid)aniline (2007) Talanta, 71, pp. 1684-1688
  • Kocjan, R., Garbacka, M., Additional purification of alkali or alkaline earth salts by using silica gel modified with pyrocatechol violet as a sorbent (1994) Talanta, 41, pp. 131-133

Citas:

---------- APA ----------
Yánez Heras, J., Rodriguez, S.D., Negri, R.M. & Battaglini, F. (2010) . Chelating electrodes as taste sensor for the trace assessment of metal ions. Sensors and Actuators, B: Chemical, 145(2), 726-733.
http://dx.doi.org/10.1016/j.snb.2010.01.027
---------- CHICAGO ----------
Yánez Heras, J., Rodriguez, S.D., Negri, R.M., Battaglini, F. "Chelating electrodes as taste sensor for the trace assessment of metal ions" . Sensors and Actuators, B: Chemical 145, no. 2 (2010) : 726-733.
http://dx.doi.org/10.1016/j.snb.2010.01.027
---------- MLA ----------
Yánez Heras, J., Rodriguez, S.D., Negri, R.M., Battaglini, F. "Chelating electrodes as taste sensor for the trace assessment of metal ions" . Sensors and Actuators, B: Chemical, vol. 145, no. 2, 2010, pp. 726-733.
http://dx.doi.org/10.1016/j.snb.2010.01.027
---------- VANCOUVER ----------
Yánez Heras, J., Rodriguez, S.D., Negri, R.M., Battaglini, F. Chelating electrodes as taste sensor for the trace assessment of metal ions. Sens Actuators, B Chem. 2010;145(2):726-733.
http://dx.doi.org/10.1016/j.snb.2010.01.027