Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We report the numerical simulation of an electrochemical system compromising a mesoporous material placed at a close distance of a working electrode. The effect of mesoscopic domains to the amperometric response of an electroactive species by applying a cyclic voltammetry is simulated to establish the influence of different parameters on the sensitivity of this system to detect molecules able to block the pores. Alumina membranes were chosen as mesoporous material; they were modified with anti-horseradish peroxidase as model system to test the behavior predicted by the simulation. The label-free assembled electrochemical system shows a reproducible behavior and it is able to detect a 10 nM protein concentration. © 2008 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection
Autor:González, G.; Priano, G.; Günther, M.; Battaglini, F.
Filiación:INQUIMAE - DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, 1428 Buenos Aires, Argentina
Palabras clave:Amperometry; Digital simulation; Label-free sensing; Mesoporous membrane; Alumina membranes; Amperometric response; Amperometry; Biomolecule detection; Close distance; Digital simulation; Electroactive species; Electrochemical systems; Horse-radish peroxidase; Label free; Label-free sensing; Mass transport; Mesoporous membranes; Mesoscopics; Model system; Numerical simulation; Protein concentrations; Reproducible behavior; Working electrode; Computer simulation; Cyclic voltammetry; Labels; Mesoporous materials; Optical devices; Superconducting materials; Mathematical models
Año:2010
Volumen:144
Número:2
Página de inicio:349
Página de fin:353
DOI: http://dx.doi.org/10.1016/j.snb.2008.11.006
Título revista:Sensors and Actuators, B: Chemical
Título revista abreviado:Sens Actuators, B Chem
ISSN:09254005
CODEN:SABCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09254005_v144_n2_p349_Gonzalez

Referencias:

  • Link, J.R., Sailor, M.J., Smart dust: self-assembling, self-orienting photonic crystals of porous Si (2003) PNAS, 100, pp. 10607-10610
  • Anderson, R.C., Muller, R.S., Tobias, C.W., Investigations of porous silicon for vapor sensing (1990) Sens. Actuators A: Phys., 23, pp. 835-839
  • Ben-Chorin, M., Kux, A., Adsorbate effects on photoluminescence and electrical conductivity of porous silicon (1994) Appl. Phys. Lett., 64, pp. 481-483
  • Lahuerhaas, J.M., Sailor, M.J., Chemical modification of the photoluminescence quenching of porous silicon (1993) Science, 261, pp. 1567-1568
  • Chan, S., Horner, S., Fauchet, P., Miller, B.L., Identification of gram negative bacteria using nanoscale silicon microcavities (2001) J. Am. Chem. Soc., 123, pp. 11797-11798
  • Vlassiouk, I., Takmakov, P., Smirnov, S., Sensing DNA hybridization via ionic conductance through a nanoporous electrode (2005) Langmuir, 21, pp. 4776-4778
  • Bayley, H., Martin, C.R., Resistive-pulse sensings from microbes to molecules (2000) Chem. Rev., 100, pp. 2575-2594
  • Nozawa, K., Osono, C., Sugawara, M., Biotinylated MCM-41 channels as a sensing element in planar bilayer lipid membranes (2007) Sens. Actuators B: Chem., 126, pp. 632-640
  • Mortari, A., Maaroof, A., Martin, D., Cortie, M.B., Mesoporous gold electrodes for sensors based on electrochemical double layer capacitance (2007) Sens. Actuators B: Chem., 123, pp. 262-268
  • Siwy, Z., Trofin, L., Kohli, P., Baker, L.A., Trautmann, C., Martin, C.R., Protein biosensors based on biofunctionalized conical gold nanotubes (2005) J. Am. Chem. Soc., 127, pp. 5000-5001
  • Uram, J.D., Ke, K., Hunt, A.J., Mayer, M., Label-free affinity assays by rapid detection of immune complexes in submicrometer pores (2006) Angew. Chem. Int. Ed., 45, pp. 2281-2285
  • Ito, T., Sun, L., Henriquez, R.R., Crooks, R.M., A carbon nanotube-based Coulter nanoparticle counter (2004) Acc. Chem. Res., 37, pp. 937-945
  • Zhang, B., Zhang, Y.H., White, H.S., The nanopore electrode (2004) Anal. Chem., 76, pp. 6229-6238
  • Kumar, S.K., Hong, J.-D., Photoresponsive ion gating function of an azobenzene polyelectrolyte multilayer spin-self-assembled on a nanoporous support (2008) Langmuir, 24, pp. 4190-4193
  • Hong, S.U., Bruening, M.L., Separation of amino acid mixtures using multilayer polyelectrolyte nanofiltration membranes (2006) J. Membr. Sci., 280, pp. 1-5
  • Newman, J., Thomas-Alyea, K., (2004) Electrochemical Systems - Chapter 11. 3rd ed., , John Wiley & Sons
  • Zhang, Y.H., Zhang, B., White, H.S., Electrochemistry of nanopore electrodes in low ionic strength solutions (2006) J. Phys. Chem. B, 110, pp. 1768-1774
  • Lee, S., Zhang, Y., White, H.S., Harrell, C.C., Martin, C.R., Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy (2004) Anal. Chem., 76, pp. 6108-6115
  • Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods. 2nd ed., , Wiley, New York Chapter 6, pp. 236-239
  • Berglund, G.I., Carlsson, G.H., Smith, A.T., Szoke, H., Henriksen, A., Hajdu, J., The catalytic pathway of horseradish peroxidase at high resolution (2002) Nature, 417, pp. 463-468
  • Demirel, G., Çaykara, T., Akaoglu, B., Çakmak, M., Construction of a novel multilayer system and its use for oriented immobilization of immunoglobulin G (2007) Surf. Sci., 601, pp. 4563-4570

Citas:

---------- APA ----------
González, G., Priano, G., Günther, M. & Battaglini, F. (2010) . Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection. Sensors and Actuators, B: Chemical, 144(2), 349-353.
http://dx.doi.org/10.1016/j.snb.2008.11.006
---------- CHICAGO ----------
González, G., Priano, G., Günther, M., Battaglini, F. "Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection" . Sensors and Actuators, B: Chemical 144, no. 2 (2010) : 349-353.
http://dx.doi.org/10.1016/j.snb.2008.11.006
---------- MLA ----------
González, G., Priano, G., Günther, M., Battaglini, F. "Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection" . Sensors and Actuators, B: Chemical, vol. 144, no. 2, 2010, pp. 349-353.
http://dx.doi.org/10.1016/j.snb.2008.11.006
---------- VANCOUVER ----------
González, G., Priano, G., Günther, M., Battaglini, F. Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: Modeling for its applications in biomolecule detection. Sens Actuators, B Chem. 2010;144(2):349-353.
http://dx.doi.org/10.1016/j.snb.2008.11.006