Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Let K be a convex body in the n-dimensional euclidean space R″. We consider the measure M0(l), in the sense of the integral geometry (i.e. invariant under the group of translations and rotations of R″ [6, Chap. 15]), of the set of non-oriented line segments of length l, which are entirely contained in K. This measure is related by (3.4) with the integrals 1m for the power of the chords of K. These relations allow to obtain some inequalities, like (3.6), (3.7) and (3.8) for M0(l). Next we relate M0(l) with the function Ω(l) introduced by Enns and Ehlers [3], and prove a conjecture of these authors about the maximum of the average of the random straight line path through K. Finally, for n = 2, M0(l) is shown to be related by (5.6) with the associated function to K introduced by W. Pohl [5]. Some representation formulas, like (3.9), (3.10) and (5.14) may be of independent interest. © 1986, Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:On the measure of line segments entirely contained in a convex body
Autor:Santaló, L.A.
Filiación:Academia Nacional de Ciencas Exatas, Fisicas y Naturales, Buenos Aires, Argentina
Año:1986
Volumen:34
Número:C
Página de inicio:677
Página de fin:687
DOI: http://dx.doi.org/10.1016/S0924-6509(09)70288-0
Título revista:North-Holland Mathematical Library
Título revista abreviado:North-Holland Math. Libr.
ISSN:09246509
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09246509_v34_nC_p677_Santalo

Referencias:

  • Blaschke, W., Eine isoperimetrische Eigenschaft des Kreises (1918) Math. Z., 1, pp. 52-57
  • Carleman, T., Ueber eine isoperimetrische Aufgabe und ihre physikalischen Anwendungen (1919) Math. Z., 3, pp. 1-7
  • Enns, E.G., Ehlers, P.F., Random paths through a convex region (1978) J. Appl. Probab., 15, pp. 144-152
  • Hadwiger, H., Ueber zwei quadratische Distanzintegrale für Eikörper (1952) Arch. Math. (Basel), 3, pp. 142-144
  • Pohl, W., The probability of linking of random closed curves (1981) Geometry Symp., pp. 113-126. , Utrecht. 1980. Lecture Notes in Math. 894 (Springer, Berlin)
  • Santaló, L.A., Encyclopedia Math. Appl. 1 (1976) Integral Geometry and Geometric Probability, , Addison-Wesley Reading, Mass

Citas:

---------- APA ----------
(1986) . On the measure of line segments entirely contained in a convex body. North-Holland Mathematical Library, 34(C), 677-687.
http://dx.doi.org/10.1016/S0924-6509(09)70288-0
---------- CHICAGO ----------
Santaló, L.A. "On the measure of line segments entirely contained in a convex body" . North-Holland Mathematical Library 34, no. C (1986) : 677-687.
http://dx.doi.org/10.1016/S0924-6509(09)70288-0
---------- MLA ----------
Santaló, L.A. "On the measure of line segments entirely contained in a convex body" . North-Holland Mathematical Library, vol. 34, no. C, 1986, pp. 677-687.
http://dx.doi.org/10.1016/S0924-6509(09)70288-0
---------- VANCOUVER ----------
Santaló, L.A. On the measure of line segments entirely contained in a convex body. North-Holland Math. Libr. 1986;34(C):677-687.
http://dx.doi.org/10.1016/S0924-6509(09)70288-0