La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions-in biofilm versus shaken flask cultures-as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments. © 2012 Springer Science+Business Media B.V.


Documento: Artículo
Título:Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis
Autor:Tribelli, P.M.; Di Martino, C.; López, N.I.; Raiger Iustman, L.J.
Filiación:Dpto. de Qca. Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160 Pab 2 Piso 4., Buenos Aires, Argentina
Palabras clave:Biofilm; Biosurfactant production; Diesel bioremediation; Polyhydroxyalkanoates; Pseudomonas; Antarctic bacteria; Biofilm cells; Biosurfactant production; Branched alkanes; Contaminated environment; Extreme environment; Flask culture; Hydrocarbon bioremediation; Inocula; Poly-hydroxyalkanoate; Polyhydroxyalkanoates; Pseudomonas; Bacteria; Biomolecules; Bioremediation; Biotechnology; Bottles; Cell culture; Cell growth; Degradation; Growth kinetics; Paraffins; Pollution; Surface active agents; Biofilms; alkane; carbon; gasoline; polyhydroxyalkanoic acid; surfactant; alkane; bacterium; biofilm; biogenic material; bioremediation; biotechnology; cytology; diesel; ester; industrial production; microbial activity; pollution tolerance; polymer; surfactant; survivorship; Antarctica; article; bacterial gene; biofilm; bioremediation; biosynthesis; drug effect; genetics; growth, development and aging; metabolism; microbiology; phylogeny; physiology; Pseudomonas; surface tension; Alkanes; Antarctic Regions; Biodegradation, Environmental; Biofilms; Carbon; Gasoline; Genes, Bacterial; Phylogeny; Polyhydroxyalkanoates; Pseudomonas; Surface Tension; Surface-Active Agents; Bacteria (microorganisms); Pseudomonas
Página de inicio:645
Página de fin:651
Título revista:Biodegradation
Título revista abreviado:Biodegradation
CAS:carbon, 7440-44-0; gasoline, 86290-81-5; Alkanes; Carbon, 7440-44-0; Gasoline; Polyhydroxyalkanoates; Surface-Active Agents


  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402
  • Ayub, N.D., Pettinari, M.J., Ruiz, J.A., López, N.I., A polyhydroxybutyrate producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance (2004) Curr Microbiol, 49, pp. 170-174
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66
  • Chayabutra, C., Ju, L.K., Degradation of n-hexadecane and its metabolites by Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions (2000) Appl Environ Microbiol, 66, pp. 493-498
  • Costerton, W., Veeh, R., Shirtliff, M., Pasmore, M., Post, C., Ehrlich, G., The application of biofilm science to the study and control of chronic bacterial infections (2003) J Clin Invest, 112, pp. 1466-1477
  • Decho, A.W., Microbial biofilms in intertidal systems: an overview (2000) Cont Shelf Res, 20, pp. 1257-1273
  • Eggink, G., Lageveen, R., Altenburg, B., Witholt, B., Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli (1987) J Biol Chem, 216, pp. 17712-17718
  • El-Masry, M.H., El-Bestaway, E., El-Adl, N.I., Bioremediation of vegetable oil and grease from polluted wastewater using a sand biofilm system (2004) World J Microbiol Biotechnol, 20, pp. 551-557
  • Golyshin, P.N., Chernikova, T.N., Abraham, W.R., Lunsdorf, H., Timmis, K.N., Yakimov, M.M., Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligatory utilizes hydrocarbons (2002) Int J Syst Evol Microbiol, 52, pp. 901-911
  • Kadouri, D., Jurkevitch, E., Okon, Y., Castro-Sowinski, S., Ecological and agricultural significance of bacterial polyhydroxyalkanoates (2005) Crit Rev Microbiol, 31, pp. 55-67
  • Kloos, K., Munch, J.M., Schloter, M., A new method for the detection of alkane monooxygenase homologous genes (alkB) in soils based on PCR-hybridization (2006) J Microbiol Methods, 66, pp. 486-496
  • Kumar, S., Tamura, K., Nei, M., MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment (2004) Brief Bioinform, 5, pp. 150-163
  • Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Formation of Polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates (1988) Appl Environ Microbiol, 54, pp. 2924-2932
  • Logan, N.A., Devos, P., Dinsdale, A., Geobacillus (2009) Bergey's Manual of Systematic Bacteriology, 3, pp. 144-160. , 2nd edn., P. VosDe, G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. R. Rainey, K.-H. Schleifer, and W. B. Whitman (Eds.), New York: Springer
  • López, N.I., Floccari, M.E., Garcia, A.F., Steinbüchel, A., Mendez, B.S., Effect of poly-3-hydroxybutyrate content on the starvation survival of bacteria in natural waters (1995) FEMS Microbiol Ecol, 16, pp. 95-101
  • López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Pötter, M., Steinbüchel, A., Méndez, B., Pseudomonas extremaustralis sp. nov. A poly(3-hydroxybutyrate) producer isolated from an Antarctic environment (2009) Curr Microbiol, 59, pp. 514-519
  • Marín, M., Yuste, L., Rojo, F., Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa (2003) J Bacteriol, 185, pp. 3232-3237
  • Ni, Y.Y., Kim, D.Y., Chung, M.G., Lee, S.H., Park, H.Y., Rhee, Y.H., Biosyhthesis of medium-chain-length poly(3-hydoxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16 (2010) Bioresour Technol, 101, pp. 8485-8488
  • O'Toole, G.A., Kolter, R., Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development (1998) Mol Microbiol, 30, pp. 295-304
  • Ostle, A., Holt, J.G., Nile Blue A as a fluorescent stain for polyhydroxybutyrate (1982) Appl Environ Microbiol, 44, pp. 238-241
  • Pamp, S., Tolker-Nielsen, T., Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa (2007) J Bacteriol, 189, pp. 2531-2539
  • Pham, T., Webb, J., Rehm, B., The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation (2004) Microbiology, 150, pp. 3405-3413
  • Pumbwe, L., Skilbeck, C., Nakano, V., Avila-Campos, M., Piazza, R., Wexler, H., Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis (2007) Microb Pathog, 43, pp. 78-87
  • Rojo, F., Degradation of alkanes by bacteria (2005) Environ Microbiol, 11, pp. 2477-2490
  • Ron, Z., Rosenberg, E., Biosurfactants and oil bioremediation (2002) Curr Opin Biotechnol, 13, pp. 249-252
  • Ruiz, J.A., López, N.I., Méndez, B.S., rpoS gene expression in carbon starved cultures of the polyhydroxyalkanoate accumulating species Pseudomonas oleovorans (2004) Curr Microbiol, 48, pp. 396-400
  • Saitou, N., Nei, M., The neighbor-joining method: a new method for reconstructing phylogenetic trees (1987) Mol Biol Evol, 4, pp. 406-425
  • Shao, T., Yang, G., Wang, M., Lu, Z., Min, H., Zhao, L., Reduction of oxidative stress by bioaugmented strain Pseudomonas sp. HF-1 and selection of potential biomarkers in sequencing batch reactor treating tobacco wastewater (2010) Ecotoxicology, 19, pp. 1117-1123
  • Singh, R., Paul, D., Jain, R.K., Biofilms: implications in bioremediation (2006) Trends Microbiol, 14, pp. 389-397
  • Soberón-Chávez, G., Aguirre-Ramirez, M., Sánchez, R., The Pseudomonas aeruginosa RhlA enzyme is involved in rhamnolipid and polyhydroxyalkanoate production (2005) J Ind Microbiol Biotechnol, 32, pp. 675-677
  • Thompson, I.P., van der Gast, C.J., Ciric, L., Singer, A.C., Bioaugmentation for bioremediation: the challenge of strain selection (2005) Environ Microbiol, 7, pp. 909-915
  • Tribelli, P.M., Lopez, N.I., Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions (2011) Extremophiles, 15, pp. 541-547
  • Tyagi, M., Fonseca, M.M.R., Carvalho, C.C.C.R., Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes (2011) Biodegradation, 22, pp. 231-241
  • (2001) U. S. Environmental Protection Agency, office of solid waste and emergency response, , US EPA Washington, DC
  • van Beilen, J.B., Li, Z., Duetz, W.A., Smits, T.H.M., Witholt, B., Diversity of alkane hydroxylase systems in the environment (2003) Oil Gas Sci Technol, 4, pp. 427-440
  • van Veen, J.A., van Overbeek, L.S., van Elsas, J.D., Fate and activity of microorganisms introduced into soil (1997) Microbiol Mol Biol Rev, 61, pp. 121-135
  • Vogel, H.J., Bonner, B.N., Acetylornithinase of Escherichia coli: partial purification and some properties (1956) J Biol Chem, 218, pp. 97-106
  • Whyte, L.G., Smits, T.H.M., Labbé, D., Witholt, B., Greer, C.W., van Beilen, J.B., Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531 (2002) Appl Environ Microbiol, 68, pp. 5933-5942


---------- APA ----------
Tribelli, P.M., Di Martino, C., López, N.I. & Raiger Iustman, L.J. (2012) . Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodegradation, 23(5), 645-651.
---------- CHICAGO ----------
Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J. "Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis" . Biodegradation 23, no. 5 (2012) : 645-651.
---------- MLA ----------
Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J. "Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis" . Biodegradation, vol. 23, no. 5, 2012, pp. 645-651.
---------- VANCOUVER ----------
Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodegradation. 2012;23(5):645-651.