Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The study was focused on the role of the penicillin binding protein PBP4* of Bacillus subtilis during growth in high salinity rich media. Using pbpE-lacZ fusion, we found that transcription of the pbpE gene is induced in stationary phase and by increased salinity. This increase was also corroborated at the translation level for PBP4* by western blot. Furthermore, we showed that a strain harboring gene disruption in the structural gene (pbpE) for the PBP4* endopeptidase resulted in a salt-sensitive phenotype and increased sensitivity to cell envelope active antibiotics (vancomycin, penicillin and bacitracin). Since the pbpE gene seems to be part of a two-gene operon with racX, a racX::pRV300 mutant was obtained. This mutant behaved like the wild-type strain with respect to high salt. Electron microscopy showed that high salt and mutation of pbpE resulted in cell wall defects. Whole cells or purified peptidoglycan from WT cultures grown in high salt medium showed increased autolysis and susceptibility to mutanolysin. We demonstrate through zymogram analysis that PBP4* has murein hydrolyze activity. All these results support the hypothesis that peptidoglycan is modified in response to high salt and that PBP4* contributes to this modification. © 2008 Elsevier Masson SAS. All rights reserved.

Registro:

Documento: Artículo
Título:High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase
Autor:Palomino, M.M.; Sanchez-Rivas, C.; Ruzal, S.M.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Ciudad Universitaria Pabellon II 4 piso, 1428 Buenos Aires, Argentina
Palabras clave:Bacillus subtilis; High salt; Muramidase; pbpE; Penicillin binding protein (PBP); Peptidoglycan; bacitracin; beta galactosidase; penicillin binding protein; penicillin G; peptidoglycan; protein pbp 4; unclassified drug; vancomycin; antibiotic sensitivity; article; autolysis; Bacillus subtilis; bacterial cell wall; gene; gene disruption; gene mutation; genetic transcription; nonhuman; operon; pbpe gene; priority journal; racx gene; salinity; salt stress; zymography; Anti-Bacterial Agents; Bacillus subtilis; Bacitracin; Bacteriolysis; Cell Wall; Microscopy, Electron, Transmission; N-Acetylmuramoyl-L-alanine Amidase; Penicillin G; Penicillin-Binding Proteins; Peptidoglycan; Salinity; Serine-Type D-Ala-D-Ala Carboxypeptidase; Transcription, Genetic; Vancomycin; Bacillus subtilis
Año:2009
Volumen:160
Número:2
Página de inicio:117
Página de fin:124
DOI: http://dx.doi.org/10.1016/j.resmic.2008.10.011
Título revista:Research in Microbiology
Título revista abreviado:Res. Microbiol.
ISSN:09232508
CODEN:RMCRE
CAS:bacitracin, 1405-87-4; penicillin G, 1406-05-9, 61-33-6; peptidoglycan, 9047-10-3; vancomycin, 1404-90-6, 1404-93-9; Anti-Bacterial Agents; Bacitracin, 1405-87-4; N-Acetylmuramoyl-L-alanine Amidase, 3.5.1.28; Penicillin G, 61-33-6; Penicillin-Binding Proteins; Peptidoglycan; Serine-Type D-Ala-D-Ala Carboxypeptidase, 3.4.16.4; Vancomycin, 1404-90-6; penicillin-binding protein 4, Bacillus subtilis, 3.4.16.4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09232508_v160_n2_p117_Palomino

Referencias:

  • Blackman, S.A., Smith, T.J., Foster, S., The role of autolysins during vegetative growth of Bacillus subtilis 168 (1998) Microbiology, 144, pp. 73-82
  • Bousfield, I.J., Keddie, R.M., Dando, T.R., Shaw, S., Simple rapid methods of cell wall analysis as an aid in the identification of aerobic coryneform bacteria (1985) Chemical Methods in Bacterial Systematics, 20, pp. 221-236. , Goodfellow M., and Minnikin D.E. (Eds), Academic Press, London
  • Cao, M.T., Wang, T., Helmann, J., Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons (2002) Mol. Microbiol., 45, pp. 1267-1276
  • Claessen, D., Emmins, R., Hamoen, L.W., Daniel, R.A., Errington, J., Edwards, D.H., Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis (2008) Mol. Microbiol., 68, pp. 1029-1046
  • Foster, S.J., Popham, D.L., Structure and synthesis of cell wall, spore cortex, teichoic acids, S-layers, and capsules (2001) Bacillus subtilis and its Relatives: From Genes to Cells, pp. 21-41. , Sonenshein L., Losick R., and Hoch J.A. (Eds), American Society for Microbiology Press, Washington, DC
  • Ghuysen, J.M., Serine β-lactamases and penicillin binding proteins (1991) Annu. Rev. Microbiol., 45, pp. 37-67
  • Höper, D., Bernhardt, J., Hecker, M., Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach (2006) Proteomics, 6, pp. 1550-1562
  • Höper, D., Völker, U., Hecker, M., Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis (2005) J. Bacteriol., 187, pp. 2810-2826
  • Horsburgh, M.J., Moir, A., σM, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentrations of salt (1999) Mol. Microbiol., 32, pp. 41-50
  • Horton, R.M., In vitro recombination and mutagenesis of DNA. SOEing together tailor-made genes (1997) Methods Mol. Biol., 67, pp. 141-149
  • Huang, X., Gaballa, A., Cao, M., Helmann, J.D., Identification of target promoters for the Bacillus subtilis extracytoplasmic function fx1factor, fx2W (1999) Mol. Microbiol., 31, pp. 361-371
  • Korat, B., Mottl, H., Keck, W., Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled over expression, and alterations in murein composition (1991) Mol. Microbiol., 5, pp. 675-684
  • Kunst, K., Rapoport, G., Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis (1995) J. Bacteriol., 177, pp. 2403-2407
  • Leloup, L., Ehrlich, S.D., Zagorec, M., Morel-Deville, F., Single cross over integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes (1997) Appl. Environ. Microbiol., 63, pp. 2117-2123
  • López, C., Heras, H., Ruzal, S.M., Sánchez Rivas, C., Rivas, E., Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium (1998) Curr. Microbiol., 36, pp. 55-61
  • Lopez, C., Heras, H., Garda, H., Ruzal, S., Sánchez-Rivas, C., Rivas, E., Biochemical and biophysical studies of Bacillus subtilis envelops under hyperosmotic stress (2000) Int. J. Food Microbiol., 55, pp. 137-142
  • López, C.S., Garda, H., Rivas, E., The effect of osmotic stress on the biophysical behavior of the Bacillus subtilis membrane studies by dynamic and steady-state fluorescenec anisotropy (2002) Arch. Biochem. Biophys., 408, pp. 220-228
  • López, C.S., Alice, A.F., Heras, H., Rivas, E., Sánchez-Rivas, C., Role of anionic phospholipids in the adaptation to high salinity in Bacillus subtilis (2006) Microbiology, 152, pp. 605-616
  • Machado, M.C., Lopez, C.S., Heras, H., Rivas, E.A., Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane (2004) Arch. Biochem. Biophys., 422, pp. 61-70
  • Mascher, T., Margulis, N.G., Wang, T., Ye, R.W., Helmann, J.D., Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon (2003) Mol. Microbiol., 50, pp. 1591-1604
  • Mascher, T., Hachmann, A.B., Helmann, J.D., Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function σ factors (2007) J. Bacteriol., 189, pp. 6919-6927
  • Miller, J., (1972) Experiments in Molecular Genetics, , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J.D., Volker, U., Hecker, M., Global analysis of the general stress response of Bacillus subtilis (2001) J. Bacteriol., 183, pp. 5617-5631
  • Piuri, M., Sanchez-Rivas, C., Ruzal, S.M., Adaptation to high salt in Lactobacillus: role of peptides and proteolytic enzymes (2003) J. Appl. Microbiol., 95, pp. 372-373
  • Piuri, M., Sánchez Rivas, C., Ruzal, S.M., Cell wall modification during osmotic stress in Lactobacillus casei (2005) J. Appl. Microbiol., 98, pp. 84-95
  • Popham, D., Setlow, P., Cloning, nucleotide sequence, and regulation of Bacillus subtilis pbpE operon, which codes for penicillin binding protein 4* and an apparent amino acid racimase (1993) J. Bacteriol., 175, pp. 2917-2925
  • Popham, D.L., Young, K.D., Role of penicillin-binding proteins in bacterial cell morphogenesis (2003) Curr. Opin. Microbiol., 6, pp. 594-599
  • Ruzal, S.M., Sánchez Rivas, C., Physiological and genetic characterization of the osmotic stress response in Bacillus subtilis (1994) Can. J. Microbiol., 40, pp. 140-144
  • Ruzal, S.M., López, C., Rivas, E., Sánchez Rivas, C., Osmotic strength blocks sporulation at stage II by impeding activation of early sigma factors in Bacillus subtilis (1998) Curr. Microbiol., 36, pp. 75-79
  • Ruzal, S.M., Sánchez Rivas, C., Bacillus subtilis DegU-P is a positive regulator of the osmotic response (1998) Curr. Microbiol., 37, pp. 368-372
  • Sauvage, E., Kerff, F., Terrak, M., Ayala, J.A., Charlier, P., The penicillin-binding proteins: structure and role in peptidoglycan synthesis (2008) FEMS Microbiol. Rev., 32, pp. 234-258
  • Schaeffer, P., Miller, J., Aubert, J., Catabolic repression of bacterial sporulation (1965) Proc. Natl. Acad. Sci. U.S.A., 554, pp. 701-711
  • Steil, L., Hoffmann, T., Budde, I., Völker, U., Bremer, E., Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity (2003) J. Bacteriol., 185, pp. 6358-6370
  • Strauch, M.A., Delineation of AbrB-binding sites on the Bacillus subtilis spo0H, kinB, ftsAZ, and pbpE promoters and use of a derived homology to identify a previously unsuspected binding site in the bsuB1 methylase promote (1995) J. Bacteriol., 177, pp. 6999-7002
  • Tam le, T., Antelmann, H., Eymann, C., Albrecht, D., Bernhardt, J., Hecker, M., Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach (2006) Proteomics, 6 (16), pp. 4565-4585
  • Vollmer, W., Joris, B., Charlier, P., Foster, S., Bacterial peptidoplycan (murein) hydrolases (2008) FEMS Microbiol. Rev., 32, pp. 259-286
  • Wecke, J., Perego, M., Fischer, W., d-alanine deprivation of Bacillus subtilis teichoic acids is without effect on cell growth and morphology but affects the autolytic activity (1996) Microb. Drug Resist., 2, pp. 123-129
  • Zellmeier, S., Zuber, U., Schumann, W., Wiegert, T., The absence of FtsH metalloprotease activity causes overexpression of the sigmaW-controlled pbpE gene, resulting in filamentous growth of Bacillus subtilis (2003) J. Bacteriol., 185, pp. 973-982
  • Zellmeier, S., Schumann, W., Wiegert, T., Involvement of Clp protease activity in modulating the Bacillus subtilis sigmaW stress response (2006) Mol. Microbiol., 61, pp. 1569-1582

Citas:

---------- APA ----------
Palomino, M.M., Sanchez-Rivas, C. & Ruzal, S.M. (2009) . High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase. Research in Microbiology, 160(2), 117-124.
http://dx.doi.org/10.1016/j.resmic.2008.10.011
---------- CHICAGO ----------
Palomino, M.M., Sanchez-Rivas, C., Ruzal, S.M. "High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase" . Research in Microbiology 160, no. 2 (2009) : 117-124.
http://dx.doi.org/10.1016/j.resmic.2008.10.011
---------- MLA ----------
Palomino, M.M., Sanchez-Rivas, C., Ruzal, S.M. "High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase" . Research in Microbiology, vol. 160, no. 2, 2009, pp. 117-124.
http://dx.doi.org/10.1016/j.resmic.2008.10.011
---------- VANCOUVER ----------
Palomino, M.M., Sanchez-Rivas, C., Ruzal, S.M. High salt stress in Bacillus subtilis: involvement of PBP4* as a peptidoglycan hydrolase. Res. Microbiol. 2009;160(2):117-124.
http://dx.doi.org/10.1016/j.resmic.2008.10.011